Abstract:
A method of fabricating a color laser, comprising growing a first thin layer of ionic crystal on a substrate. The crystal can comprise many types of ionic crystals, such as sodium chloride or potassium chloride. A second thin layer of a different type of ionic crystal can be deposited above the first ionic crystal layer, such as lithium fluoride or sodium fluoride. An inert metal layer can be deposited between the first and second layers of ionic crystal and above the second layer of ionic crystal. When the first and second ionic crystal layers are radiated with gamma rays, they form color centers at the spots radiated. Because of the difference in crystalline properties of the two different ionic crystal centers, their color centers have different wavelengths. Each of the ionic crystal layers emit light at different characteristic wavelengths when illuminated at their unique absorption frequencies, and can be made to lase separately.
Abstract:
The RTD device of the present invention is comprised of a semiconductor substrate and a substantially thin conductive metal layer disposed upon the semiconductor substrate, wherein the conductive metal has a substantially linear temperature-resistance relationship. The conductive layer is etched into a convoluted RTD pattern, which consequently increases the overall resistance and minimizes the overall mass of the RTD assembly. A contact glass cover and a conductive metal-glass frit are placed over the RTD assembly to hermetically seal the RTD. The resultant structure can be “upside-down” mounted onto a header or a flat shim so that the bottom surface of the semiconductor substrate is exposed to the external environment, thus shielding the RTD from external forces. The resultant structure is a low mass, highly conductive, leadless, and hermetically sealed RTD that accurately measures the temperature of liquids and gases and maintains fast response time in high temperatures and harsh environments.
Abstract:
A pressure transducer comprising a corrosion resistant metal diaphragm, having an active region, and capable of deflecting when a force is applied to the diaphragm; and a piezoresistive silicon-on-insulator sensor array disposed on a single substrate, the substrate secured to the diaphragm, the sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm, the sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors are dielectrically isolated from the substrate.
Abstract:
It is an objective of the present invention to provide a pressure transducer assembly for measuring pressures in high temperature environments that employs an elongated tube which is terminated at one end by an acoustic micro-filter. The micro-filter has a plurality of apertures extending from one end to the other end, each aperture is of a small diameter as compared to the diameter of the transducer and the damper operates to absorb acoustic waves impinging on it with limited or no reflection. To improve the absorption of acoustic waves, the elongated tube may be tapered and/or mounted to a support block and further convoluted to reduce the overall size and mass of the device. A pressure transducer with a diaphragm flush may be mounted to the elongated tube and extend through to the inner wall of the tube. Hot gases propagate through the elongated tube and their corresponding pressures are measured by the transducer. The acoustic filter operates to absorb acoustic waves resultant from the hot gases, therefore enabling the pressure transducer to be mainly responsive to high frequency waves associated with the gas turbine operation.
Abstract:
A single pressure sensing capsule has a reference pressure ported to the rear side of a silicon sensing die. The front side of the silicon sensing die receives a main pressure at another port. The silicon sensing die contains a full Wheatstone bridge on one of the surfaces and within the active area designated as the diaphragm area. Thus, the difference of the main and reference pressure results in the sensor providing an output equivalent to the differential pressure, namely the main pressure minus the reference pressure which is the stress induced in a sensing diaphragm. In any event, the reference pressure or main pressure may be derived from a pump pressure which is being monitored. The pump pressure output is subjected to a pump ripple or a sinusoidally varying pressure. In order to compensate for pump ripple, one employs a coiled tube. The tube length is selected to suppress the pump ripple as applied to the sensor die. In this manner, the pump ripple cannot cause resonance which would result in pressure amplification and which pressure amplification would destroy the sensor.
Abstract:
An oil-filled pressure transducer including a glass pre-form having contact pins and a oil-filled tube, each running top to bottom through holes in the pre-form. The oil-filled tube extends beyond the top of the pre-form. A glass alignment plate has an alignment aperture designed to fit over the extended oil-filled tube and-another aperture placed at a predetermined position from the alignment aperture which is shaped to accommodate a sensor. When the plate is aligned over the oil-filled tube, a sensor module can be positioned accurately in the alignment aperture so that contact is made with the pins. A header having a central diaphragm is placed over the pre-form and the aligned sensor creating a space between the diaphragm and the sensor which is filled with oil. The transducer utilizes less oil and exhibits a lower backpressure with increasing temperature than other oil-filled pressure transducers of similar size.
Abstract:
There is described a temperature compensation scheme for a pressure sensitive metal diaphragm transducer. The transducer employs a Wheatstone bridge fabricated from p-type piezoresistors. The Wheatstone bridge is glassed directly onto the metal diaphragm. As the temperature of operation increases, the diaphragm exhibits a temperature variation of the Modulus of Elasticity. The Modulus of the metal diaphragm decreases with increasing temperature. Because of this, the same pressure applied to the metal diaphragm causes it to deflect further, which in turns causes increased strain applied to the bridge. Because of this effect, the sensitivity of the transducer increases with increasing temperature. A resistor is now placed in series with the Wheatstone bridge. The resistor is in series with the biasing voltage and because the TCS of the diaphragm is of an opposite sign, the series resistor has an even higher TCR in series with the bridge. In this manner, the bridge voltage is made to decrease with increasing temperature. Due to the fact that the bridge voltage decreases with increasing temperature the change in voltage compensates for the change in the Modulus of the metal diaphragm and therefore provides an accurate output at all temperatures.
Abstract:
A sensor array for a pressure transducer having a diaphragm with an active region, and capable of deflecting when a force is applied to the diaphragm. The sensor array disposed on a single substrate, the substrate secured to the diaphragm. The sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm. The sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors dielectrically isolated from the substrate.
Abstract:
A pressure sensor including: a deflectable diaphragm including a substantially central boss and channel; and, an optical waveguide having first and second arms, wherein the first arm is substantially aligned with an edge of the boss and the second arm is substantially aligned with an edge of the channel.
Abstract:
There is disclosed a high pressure sensing header which is relatively insensitive to mounting torque. Essentially the header consists of an outer torque isolating shell which has a “C” shaped cross section with the cylindrical shell surrounding an inner “H” section header. The inner “H” section header has a thick diaphragm and is surrounded by the torque isolating shell which is secured to the “H” section header at a peripheral flange of the “H” section header. In this manner when the header is installed, the installation force is absorbed by the outer shell and there is no installation force or torque exhibited by the inner “H” section which will respond only to stress due to pressure. The torque isolating shell also contains a top surface which has a counterbore which can accommodate a crush ring, and when the unit is installed, the crush ring is forced or crushed against an installation wall to enable the inner header to receive pressure without experiencing any significant installation force.