Electronic Devices with Display-Overlapping Antennas

    公开(公告)号:US20210391651A1

    公开(公告)日:2021-12-16

    申请号:US16903198

    申请日:2020-06-16

    Applicant: Apple Inc.

    Abstract: An electronic device may include a conductive housing with a rear wall and a sidewall. A display may be mounted to the sidewall and may include a conductive display structure separated from the sidewall by a slot. An antenna arm may be interposed between the conductive display structure and the rear wall. A first inductor may couple the conductive display structure to the housing and may compensate for a distributed capacitance between the antenna arm and the conductive display structure. A second inductor may couple the antenna arm to the rear wall and may compensate for a distributed capacitance between the antenna arm and the rear wall. A speaker may be co-located with the antenna. A third inductor may couple the antenna arm to the rear wall to allow antenna currents to bypass the speaker.

    Electronic devices having distributed millimeter wave antennas

    公开(公告)号:US11108155B2

    公开(公告)日:2021-08-31

    申请号:US16036780

    申请日:2018-07-16

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry for conveying radio-frequency signals greater than 10 GHz. The wireless circuitry may include a phased antenna array that transmits a steerable signal beam and independent antennas that are separate from the array. The array may be coupled to a first transceiver and the independent antennas may be coupled to a second transceiver. Power amplifier stages may be coupled between the second transceiver and the independent antennas to boost the gain of the independent antennas. If desired, the array and the independent antennas may be coupled to ports of the same transceiver. In this arrangement, each independent antenna may include an antenna feed that is coupled to a respective pair of ports on the transceiver. This may serve to boost the gain of the independent antennas without power amplifier circuitry. The independent antennas may have smaller footprints than the phased antenna array.

    Electronic devices having antennas with symmetric feeding

    公开(公告)号:US11088452B2

    公开(公告)日:2021-08-10

    申请号:US16146705

    申请日:2018-09-28

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array. Each antenna in the array may include a patch element having first, second, third, and fourth positive antenna feed terminals. The first and second terminals may convey first signals with a first polarization. The third and fourth terminals may convey second signals with a second polarization. Phase shifting components such as phase shifting transmission line segments or phase shifter circuits may ensure that the first signals at the first terminal are out of phase with respect to the first signals at the second terminal and may ensure that the second signals at the third terminal are out of phase with respect to the second signals at the fourth terminal. This may allow antenna current density for both polarizations to be symmetrically distributed about a normal axis of the patch element.

    Electronic Devices with Dielectric Resonator Antennas

    公开(公告)号:US20210119338A1

    公开(公告)日:2021-04-22

    申请号:US17111131

    申请日:2020-12-03

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with a phased antenna array and a display cover layer. The phased antenna array may include a dielectric resonator antenna. The dielectric resonator antenna may include a dielectric resonating element embedded in a lower permittivity dielectric substrate. The substrate and the resonating element may be mounted to a flexible printed circuit. A slot may be formed in ground traces on the flexible printed circuit and aligned with the resonating element. The slot may excite resonant modes of the resonating element. The resonating element may convey corresponding radio-frequency signals through the cover layer. A dielectric matching layer may be interposed between the resonating element and the cover layer. If desired, the slot may radiate additional radio-frequency signals and the matching layer may have a tapered shape. Dielectric resonator antennas for covering different polarizations and frequencies may be interleaved across the array.

    Supplemental use of millimeter wave spectrum

    公开(公告)号:US10980035B2

    公开(公告)日:2021-04-13

    申请号:US16701045

    申请日:2019-12-02

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with wireless circuitry and control circuitry. The wireless circuitry may communicate using a 5G New Radio (NR) protocol. The wireless circuitry may have multiple bandwidth part configurations. The control circuitry may place the wireless circuitry in a first bandwidth part configuration where a first bandwidth part of a first component carrier is active and a second bandwidth part of a second component carrier is inactive. The control circuitry may switch the wireless circuitry from the first bandwidth part configuration to a second bandwidth part configuration in which the first bandwidth part is inactive and the second bandwidth part is active. The first and second component carriers may be intra-band contiguous, intra-band non-contiguous, or inter-band. The control circuitry may switch the wireless circuitry into other configurations for covering other bandwidth parts of any desired component carriers in any desired bands.

    Electronic device slot antennas
    68.
    发明授权

    公开(公告)号:US10978806B2

    公开(公告)日:2021-04-13

    申请号:US16141793

    申请日:2018-09-25

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided an antenna, a display, and a housing. The display may include a conductive display structure and a cover layer. The housing may include peripheral conductive structures and a conductive rear wall. The peripheral structures may include a ledge separated from the conductive display structure by a gap. The peripheral structures and the rear wall may define opposing edges of a slot element for the antenna. Conductive bridging structures may be coupled between the conductive display structure and the ledge across the gap. The bridging structures may at least partially overlap locations along the length of the slot element where antenna currents around the slot element exhibit a maximum magnitude. The bridging structures may align the phase of current induced on the ledge with the phase of the current induced on the conductive display structure to maximize antenna efficiency through the cover layer.

    Electronic device slot antennas
    69.
    发明授权

    公开(公告)号:US10916832B2

    公开(公告)日:2021-02-09

    申请号:US15900610

    申请日:2018-02-20

    Applicant: Apple Inc.

    Abstract: An electronic device may include first, second, and third antennas and conductive housing structures. The first, second, and third antennas may each include slots having open ends defined by gaps in the conductive housing structures. The second antenna may be interposed between the first and third antennas. The first and second antennas may convey signals at the same frequencies. The third antenna may convey signals at a lower frequency than the first and second antennas. A switch may be coupled across the third slot and may have a first state at which the switch forms a closed end of the third slot and a second state at which the third slot has two opposing open ends. Control circuitry may selectively activate one of two feeds for the third antenna and may adjust the switch so that the third antenna exhibits satisfactory antenna efficiency regardless of environmental conditions for the device.

    Electronic device having multi-frequency ultra-wideband antennas

    公开(公告)号:US10819029B2

    公开(公告)日:2020-10-27

    申请号:US16271617

    申请日:2019-02-08

    Applicant: Apple Inc.

    Abstract: An electronic device may be provided with control circuitry and doublets of first and second antennas that are used to determine the position and orientation of the device relative to external wireless equipment. The control circuitry may determine the relative position and orientation of the external equipment by measuring the angle of arrival of radio-frequency signals from the external equipment. Each doublet may include first and second cavity-backed slot antennas. The first and second antennas may each include a first slot element that is directly fed and a second slot element that is parasitically fed by the first slot element. The first slot element may radiate in an ultra-wideband communications band at 8.0 GHz and the second slot element may radiate in an ultra-wideband communications band at 6.5 GHz. The doublet may be aligned with a dielectric window in a conductive sidewall for the device.

Patent Agency Ranking