摘要:
Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the fox of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.
摘要:
Hardfacing materials include particles of polycrystalline diamond (PCD) material embedded within a matrix material. The PCD particles comprise a plurality of inter-bonded diamond grains. Material compositions and structures used to apply a hardfacing material to an earth-boring tool (e.g., welding rods) include PCD particles. Earth-boring tools include a hardfacing material comprising PCD particles embedded within a matrix material on at least a portion of a surface of a body of the tools. Methods of forming a hardfacing material include subjecting diamond grains to elevated temperatures and pressures to diamond-to-diamond bonds between the diamond grains and form a PCD material. The PCD material is broken down to form PCD particles that include a plurality of inter-bonded diamond grains. Methods of hardfacing tools include bonding PCD particles to surfaces of the tools using a metal matrix material.
摘要:
A cutting element comprising a substrate having an upper surface, a rear surface spaced apart from the upper surface, and a side surface connected to the rear surface and upper surface. The cutting element further includes a superabrasive layer comprising a rear surface, an upper surface, and a side surface connected to and extending between the rear surface and upper surface, wherein the rear surface of the superabrasive layer overlies the upper surface of the substrate. The cutting element is also formed to include a jacket overlying the side surface of the substrate and abutting a portion of the rear surface of the superabrasive layer, wherein the jacket comprises a flange extending along a portion of the side surface of the superabrasive layer.
摘要:
Downhole tool bearings are provided with diamond enhanced materials. The diamond enhanced materials comprise diamond grains in a matrix of tungsten or silicon carbide or a silicon bonded diamond material. A brazed diamond grit or diamond particles coated with a reactive braze may be utilized for bearing applications. Bearing rings for use in downhole tools may be formed at least in part with the diamond enhanced material. In one embodiment, the bearing rings may be used in a positive displacement motor. In additional embodiments, the bearing rings may be used in a submersible pump.
摘要:
An abrasive-impregnated cutting structure for use in drilling a subterranean formation is disclosed. The abrasive-impregnated cutting structure may comprise a plurality of abrasive particles dispersed within a substantially continuous matrix, wherein the abrasive-impregnated cutting structure exhibits an anisotropic wear resistance. One or more of the amount, average size, composition, properties, shape, quality, strength, and concentration of the abrasive particles may vary within the abrasive-impregnated cutting structure. Anisotropic wear resistance may relate to a selected direction, such as, for example, one or more of an expected direction of engagement of the abrasive-impregnated cutting structure with the subterranean formation and an anticipated wear direction. Anisotropic wear resistance of an abrasive-impregnated cutting structure may be configured for forming or retaining a formation-engaging leading edge thereof. A rotary drag bit including at least one abrasive-impregnated cutting structure is disclosed.
摘要:
A superabrasive cutting element including a diamond or other superabrasive material table having a peripheral cutting edge defined by at least two adjacent chamfers having an arcuate surface substantially tangent to each of the at least two chamfers interposed therebetween. Methods of producing such superabrasive cutting elements and drill bits equipped with such superabrasive cutting elements are also disclosed.
摘要:
A rotary-type drill bit for drilling subterranean formations having areas or components having surfaces exhibiting a relatively low adhesion, preferably nonwater-wettable, surface over at least a portion thereof.
摘要:
The residual stresses that are experienced in polycrystalline diamond cutters, which lead to cutter failure, can be effectively modified by selectively thinning the carbide substrate subsequent to high temperature, high pressure (sinter) processing, by selectively varying the material constituents of the cutter substrate, by subjecting the PDC cutter to an annealing process during sintering, by subjecting the formed PDC cutter to a post-process stress relief anneal, or a combination of those means.
摘要:
A hardfacing composition comprises at least 60% by weight of hard metal granules including a quantity of sintered carbide pellets and a quantity of cast carbide pellets. The cast and sintered carbides are selected from the group of carbides consisting of chromium, molybdenum, niobium, tantalum, titanium, tungsten, and vanadium carbides and alloys and mixtures thereof. The balance of the hardfacing composition is matrix metal with traces of flux or deoxidizer, and alloying elements. All percentages given are pre-application ratios.
摘要:
Cutting elements providing a relatively constant superabrasive area in contact with the formation responsive to weight on bit during a substantial portion of the useful life of a circular cutting face cutting element or other cutting element exhibiting a non-linear cutting edge, for example, from about 5% diametrical wear to in excess of about 30% diametrical wear in the case of a circular cutting element, measured across the cutting face. The superabrasive table of the cutting element is configured, internally, externally, or both, to vary in depth radially and laterally, as required, so that an increase in width of the contact or wear flat area with the formation and the variation in table depth as the cutting element wears, are substantially offsetting. The rate of penetration of a drill bit so equipped may thus be maintained at a desirable magnitude without a substantial increase in weight on bit as the cutting element wears, since the superabrasive contact area is maintained relatively constant.