Abstract:
A data imprinting device having an input lock switch responsive to external pressure for rendering unable the input of imprinting data by an input switch, wherein the input switch and the input lock switch controls the operation of a lamp for illuminating the imprinting data in such a way that the illumination differs between when the input is unable and when the data has been input.
Abstract:
A drive apparatus includes a magnet rotor having a plurality of magnetic poles that are magnetized, a stator having a magnetic pole portion that opposes each pole of the magnet rotor, a coil configured to excite the magnetic pole portion, a position detector configured to detect a position of the magnet rotor, a first driver configured to switch an electrification state of the coil in accordance with a preset time interval, a second driver configured to switch an electrification state of the coil in accordance with an output of the position detector, and a controller configured to select the first driver when the output of the position detector is less than a first threshold, and to select the second driver when the output of the position detector is equal to or larger than the first threshold.
Abstract:
An optical apparatus having a recording mode that is switchable between motion picture recording and still picture recording includes an optical element, a motor that includes a rotor having a magnet, and a stator having a coil configured to provide a rotational force to the magnet, the motor being configured to drive the optical element, a position sensor configured to detect a position of the rotor of the motor, and a driving circuit configured to select, in accordance with the recording mode, first driving configured to switch an electrization to the coil in the motor in accordance with a determined time interval, or second driving configured to switch an electrization to the coil in the motor in accordance with an output of the position sensor.
Abstract:
A brushless DC motor configured to drive a driven member includes a rotor having a magnet, a stator having a coil configured to provide a rotational force to the magnet, a position detector configured to output a first signal that is periodic, in accordance with a rotating position of the rotor, a signal generator configured to generate a second signal by adding a lead angle to a phase of the first signal output from the position detector, an excitation switch configured to select an excitation to the coil in accordance with the second signal, and a phase change part configured to change the lead angle in accordance with at least one of a position and a moving direction of the driven member.
Abstract:
A focus controller configured to control focus of an optical element includes a focus state detector configured to detect a focus state based on a contrast value of an image formed by the optical element, and a driving mechanism that moves the optical element including a motor, a position sensor configured to detect a position of a rotor in the motor, and a driving controller configured to select, in accordance with the contrast value, first driving configured to switch an electrization to a coil in accordance with an output of the position senor, or second driving configured to switch the electrization to the coil in the motor in accordance with a determined time interval.
Abstract:
A diaphragm blade includes a light-shielding, thin-plate blade base made of laser absorptive resin to regulate an aperture, and a first shaft portion made of laser transmissive resin and provided on one surface of the blade base. The first shaft portion includes a cylindrical member which is welded to the protruding weld portion, a protruding weld portion integrally formed with the blade base, and a recess formed at the back side of the protruding weld portion. The cylindrical member has a first recess defined at one end thereof near the blade base and coming into contact with the protruding weld portion, and a second recess defined at the other end. A contact surface of the protruding weld portion is melted with laser beam transmitted through the cylindrical member, whereby the protruding weld portion is welded to the cylindrical member.
Abstract:
A driving device which is capable of increasing a driving speed at which an object to be driven is driven, enhancing quietness in driving the object to be driven, and positioning the object to be driven with high accuracy. A hollow cylindrical magnet (1) extends along an optical axis, and a plurality of magnetized parts (1a to 1j) spirally extend along the outer peripheral surface of the magnet. A first yoke (2), a second yoke (3), a third yoke (7), and a fourth yoke (8) are formed of a soft magnetic material, and each of the yokes has five magnetic pole teeth (2a to 2e, 3a to 3e, 7a to 7e, or 8a to 8e) each disposed in opposed relation to a corresponding one of the magnetized parts of the magnet. A lens holder (12) holds the object to be driven and supports the magnet such that the magnet is movable along the optical axis. First and second coils (5, 10) for magnetizing the first and second yokes, respectively, are energized to move the magnet along the lens holder in the direction along the predetermined axis to thereby drive the object to be driven.
Abstract:
A motor includes a cylindrical magnet, first outer magnetic pole portions which are formed by gapping part of a cylinder from the distal end in the axial direction of the motor, and which oppose the outer circumferential surface of the magnet, second outer magnetic pole portions which are formed by gapping part of a cylinder from the distal end in the axial direction, and which oppose the outer circumferential surface of the magnet, first inner magnetic pole portions opposing the inner circumferential surface of the magnet, second inner magnetic pole portions opposing the inner circumferential surface of the magnet, a first coil which is located at a position between the first outer magnetic pole portions and the first inner magnetic pole portions in the axial direction of the magnet, and which excites the first outer magnetic pole portions, a second coil which is located between the second outer magnetic pole portions and the second inner magnetic pole portions on the side opposite the first coil in the axial direction of the magnet, and which excites the second outer magnetic pole portions, and an annular member which is in contact with the inner circumferential surface of the magnet, and which fits with at least the first inner magnetic pole portions or second inner magnetic pole portions.
Abstract:
There is provided a small-sized and slim driving device which is easy to manufacture and capable of producing high output. A magnet has a cylindrical shape, and at least the outer peripheral surface of the magnet is circumferentially divided into n sections magnetized so as to have alternately different poles. The magnet can rotate about a rotational axis of the cylindrical shape. A coil is arranged axially of the magnet and parallel thereto. An outer magnetic pole portion is disposed to be magnetized by the coil, and has a plurality of hair comb tooth-shaped portions opposed to the magnet and arranged around the magnet such that an angle corresponding to the circumferential width of each of the hair comb tooth-shaped portions opposed to the magnet about the rotational axis of the hollow cylindrical shape of the magnet is equal to a predetermined angle A. An inner magnetic pole portion is disposed to be magnetized by the coil, and has a hollow cylindrical shape opposed to the inner peripheral surface of the magnet. The predetermined angle A is set to such a value that a rotational force acts on the magnet to return to a position in which a circumferential center of each of n magnetized sections on the outer peripheral surface of the magnet is opposed to a circumferential center of a corresponding one of the hair comb tooth-shaped portions of the outer magnetic pole portion, when the circumferential center of each of n magnetized sections shifts from the position.
Abstract:
A coil is disposed in an axial direction of a rotor magnet, outer and inner magnetic poles to be magnetized by the coil are opposed to outer and inner peripheral surfaces of the rotor magnet, and a holder for holding the centers of the magnetized portions of the magnet at positions deviated from the straight line connecting the centers of the outer magnetic poles and the rotational center of the magnet when the outer and inner magnetic poles are not magnetized, thereby realizing a single phase motor. When the single phase motor is constructed, a weight having an imbalanced mass with respect to a rotational center is attached to a rotary shaft of the motor, and the weight secured to the rotary shaft is covered by a cylindrical cover within which the outer magnetic poles are secured, so that a stable vibration can be generated, thereby providing a super-compact motor having high output for a communication apparatus.