摘要:
Certain aspects of the present disclosure provide techniques and apparatus for operating in a television white space (TVWS) network. One example method generally includes receiving, at an apparatus, a message with a field indicating a current version of an unused frequency spectrum map (e.g., a white space map (WSM)), the unused frequency spectrum map indicating channels usable for wireless communications; determining whether the current version of the unused frequency spectrum map is different than a previous version of the unused frequency spectrum map; and using a channel for wireless communications based on the determination. Another example method generally includes accessing a database of available channels for a current location of an apparatus via a neighboring portable or fixed enabling apparatus and enabling one or more portable dependent apparatuses for the wireless communications via one or more of the available channels.
摘要:
White space signals are differentiated from licensed ATSC signals through modification of a waveform of the white space signal. White space signals may be modified by shifting the ATSC-compatible waveform so that the pilot frequency of the white space signal is at a location outside of the frequency range associated with the pilot frequency in a licensed ATSC signal or embedding a watermark signal into said ATSC-like white space signals. White space device transmitters generate the signals with these modifications and white space receivers are equipped to detect whether a pilot exists in the standard licensed pilot frequencies. Based on these differences, white space devices can better operate without interfering with licensed ATSC transmission. Additionally, the modification techniques may be used to embed data in the white space signal that may be used to communicate connection data or networking data to other white space devices.
摘要:
In one embodiment, a method includes receiving label data that indicates all interface labels that belong to each path ID of multiple path IDs associated with corresponding multiple paths between provider edge nodes in a Multi-Protocol Label Switching (MPLS) network. Each interface label is associated with a network interface on a node in the MPLS network. Based on the label data, an untested list that holds data that indicates all unique interface labels is generated. A tested interface selected from the untested list is scheduled for testing. After scheduling, the interface label of the tested interface is removed from the untested list. It is determined whether the untested list still includes data for at least one interface label. If not, then a test of the MPLS network is completed without testing every path end to end, thus conserving network resources.
摘要:
Various methods and apparatuses for transmitting an allocation of time in a wireless communication system are disclosed. In one aspect, an allocation of time for receiving communications via a receive beam direction is transmitted. The allocation of time may be based on information regarding an apparatus known to be located in the receive beam direction. A unique time for receiving communications from each known apparatus may be allocated, or a duration of time for receiving communications from the known apparatuses may vary based on a number of apparatuses known to located in a receive beam direction.
摘要:
A method for wireless communications is provided that includes receiving a plurality of packets using a first radio link from an apparatus; reconstructing an index for the plurality of packets for use in a second radio link; determining reception state information indicating whether each packet in the plurality of packets has been received correctly; and receiving additional packets based on the index and the reception state information. Apparatuses for performing the methods are also disclosed.
摘要:
Aspects of the present disclosure propose a method for determining preferred transmit and receive antenna patterns of a wireless device with respect to another wireless device. The method generally includes determining the beamforming or calibrating coefficients corresponding to the preferred transmit and receive antenna patterns of a wireless device iteratively.
摘要:
White space signals are differentiated from licensed ATSC signals through modification of a waveform of the white space signal. White space signals may be modified by shifting the ATSC-compatible waveform so that the pilot frequency of the white space signal is at a location outside of the frequency range associated with the pilot frequency in a licensed ATSC signal or embedding a watermark signal into said ATSC-like white space signals. White space device transmitters generate the signals with these modifications and white space receivers are equipped to detect whether a pilot exists in the standard licensed pilot frequencies. Based on these differences, white space devices can better operate without interfering with licensed ATSC transmission. Additionally, the modification techniques may be used to embed data in the white space signal that may be used to communicate connection data or networking data to other white space devices.
摘要:
A method of facilitating a silence period in a directional communication network is provided. The method may comprise initiating, by a first apparatus, a listening period mode, wherein the listening period mode comprises ceasing at least a portion of current communication and configuring the first apparatus to receive a request to initiate a new communication, determining whether a request is received during a time period in the listening period mode, and transmitting a response if the request to initiate the new communication is received during the time period in the listening period mode.
摘要:
Method and apparatus for congestion control in a wireless communication system. In one embodiment, the status of a congestion bit indicates the type of adjustment, such as increase or decrease, to be performed at an access terminal to determine the next data rate for transmissions on the reverse link. The status of the congestion bit is determined by comparing a congestion parameter to a predetermined threshold. One embodiment implements an outerloop threshold having a margin with respect to the desired congestion metric threshold. The outerloop threshold is adjusted in response to comparing a measured congestion metric to the desired threshold. The outerloop threshold adjustment maintains the congestion metric to within a predetermined probability of exceeding the desired threshold.