摘要:
A magnetoresistive device of a CPP (current perpendicular to plane) structure includes a magnetoresistive unit sandwiched between a first substantially soft magnetic shield layer from below, and a second substantially soft magnetic shield layer from above, with a sense current applied in a stacking direction. The magnetoresistive unit includes a non-magnetic intermediate layer sandwiched between a first ferromagnetic layer, and a second ferromagnetic layer. At least one of the first and second shield layers is configured in a window frame of a planar shape, including a front frame-constituting portion and a back frame-constituting portion partially comprising a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with magnetic flux going all the way around the window framework, turning the magnetization of the front frame-constituting portion into a single domain.
摘要:
The invention provides a magneto-resistive effect device of the CPP (current perpendicular to plane) structure, comprising a magneto-resistive effect unit, and an upper shield layer and a lower shield layer located with that magneto-resistive effect unit sandwiched between them, with a sense current applied in a stacking direction, wherein the magneto-resistive effect unit comprises a nonmagnetic metal intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with that nonmagnetic metal intermediate layer sandwiched between them, wherein the first ferromagnetic layer and said second ferromagnetic layer are exchange coupled via the nonmagnetic metal intermediate layer such that where there is no bias magnetic field applied as yet, their magnetizations are anti-parallel with each other, and at least one of the upper shield layer and the lower shield layer has an inclined magnetization structure with its magnetization inclining with respect to a track width direction, so that by the magnetization of that inclined magnetization structure, a bias magnetic field can be applied to the first ferromagnetic layer and the second ferromagnetic layer. It is thus possible to obtain a magneto-resistive effect device of improved reliability that enables a structure capable of having a narrowed read gap (the gap between the upper shield and the lower shield) to be adopted to meet the recently demanded ultra-high recording density, allows a stable bias magnetic field to be applied in simple structure, and obtain a stable magneto-resistive effect change.
摘要:
A first shield portion located below an MR stack includes a first main shield layer, a first antiferromagnetic layer, and a first magnetization controlling layer including a first ferromagnetic layer exchange-coupled to the first antiferromagnetic layer. A second shield portion located on the MR stack includes a second main shield layer, a second antiferromagnetic layer, and a second magnetization controlling layer including a second ferromagnetic layer exchange-coupled to the second antiferromagnetic layer. The MR stack includes two free layers magnetically coupled to the two magnetization controlling layers. Only one of the two magnetization controlling layers includes a third ferromagnetic layer that is antiferromagnetically exchange-coupled to the first or second ferromagnetic layer through a nonmagnetic middle layer. The first shield portion includes an underlayer disposed on the first main shield layer, and the first antiferromagnetic layer is disposed on the underlayer.
摘要:
A magnetoresistive element includes first and second shield layers, an MR stack disposed therebetween, a first hard magnetic layer for setting the magnetization direction of the first shield layer, and a second hard magnetic layer for setting the magnetization direction of the second shield layer. The MR stack includes a first ferromagnetic layer magnetically coupled to the first shield layer, a second ferromagnetic layer magnetically coupled to the second shield layer, and a spacer layer between the first and second ferromagnetic layers. The first and second ferromagnetic layers have magnetizations that are in antiparallel directions when any external magnetic field other than a magnetic field resulting from the first and second hard magnetic layers is not applied to the two ferromagnetic layers, and that change their directions in response to an external magnetic field other than the magnetic field resulting from the first and second hard magnetic layers.
摘要:
The invention provides a magnetoresistive device of the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first shield layer and a second shield layer which are located and formed such that the magnetoresistive unit is sandwiched between them from above and below, with a sense current applied in the stacking direction, wherein said magnetoresistive unit comprises a non-magnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that said nonmagnetic intermediate layer is sandwiched between them.
摘要:
A thermally-assisted magnetic head that includes an air bearing surface facing a recording medium and that performs magnetic recording while heating the recording medium includes: a magnetic recording element including a pole of which one edge part is positioned on the air bearing surface and that generates magnetic flux traveling toward the magnetic recording medium; a waveguide configured with a core through which light propagates and a cladding, at least one part of which extends to the air bearing surface, surrounding the periphery of the core; a plasmon generator that faces a part of the core and that extends to the air bearing surface. The plasmon generator is configured with a first part and a second part that are joined; the first part that is positioned on the air bearing surface side and that is made of a high melting point material, and the second part that is positioned away from the air bearing surface and that is made of a material with a small value ∈″, which is an imaginary component of permittivity.
摘要:
The invention provides a magnetoresistive device of the CCP (current perpendicular to plane) structure comprising a magnetoresistive unit sandwiched between soft magnetic shield layers with a current applied in the stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer sandwiched between ferromagnetic layers. A planar framework positions the soft magnetic shield layers and comprises a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer constructed by repeating the stacking of a multilayer unit comprising a nonmagnetic underlay layer and a high coercive material layer. The nonmagnetic gap layer is designed and located such that a magnetic flux given out of the bias magnetic field-applying layer is efficiently directed along a closed magnetic path around the framework to form a single domain of magnetization.
摘要:
A magnetic field detecting element comprises: a stack which includes first, second and third magnetic layers whose magnetization directions depend upon an external magnetic field, the second magnetic layer being positioned between the first magnetic layer and the third magnetic layer, a first non-magnetic intermediate layer sandwiched between the first magnetic layer and the second magnetic layer, and a second non-magnetic intermediate layer sandwiched between the second magnetic layer and the third magnetic layer, wherein the stack is adapted such that sense current flows in a direction that is perpendicular to a film surface thereof; and a bias magnetic layer which is provided on a side of the stack, the side being opposite to an air bearing surface of the stack.
摘要:
A magnetoresistive element includes a pair of shield portions, and an MR stack and a bias magnetic field applying layer that are disposed between the pair of shield portions. The shield portions respectively include single magnetic domain portions. The MR stack includes a pair of ferromagnetic layers magnetically coupled to the pair of single magnetic domain portions, and a spacer layer disposed between the pair of ferromagnetic layers. The MR stack has a front end face, a rear end face and two side surfaces. The magnetoresistive element further includes two flux guide layers disposed between the pair of single magnetic domain portions and respectively adjacent to the two side surfaces of the MR stack. Each of the two flux guide layers has a front end face and a rear end face. The bias magnetic field applying layer has a front end face that faces the rear end face of the MR stack and the respective rear end faces of the two flux guide layers.
摘要:
The semiconductor oxide layer that forms a part of the spacer layer in the inventive giant magnetoresistive device (CPP-GMR device) is composed of zinc oxide of wurtzite structure that is doped with a dopant given by at least one metal element selected from the group consisting of Zn, Ge, V, and Cr in a content of 0.05 to 0.90 at %: there is the advantage obtained that ever higher MR ratios are achievable while holding back an increase in the area resistivity AR.