摘要:
A method for allocating resources in a wireless communications environment comprises receiving a mapping between a first hop-port and frequency range, and determining whether to map a second access terminal to a second hop-port that is mapped to at least the same frequency range during a substantially similar instance in time, the determination made as a function of characteristics relating to a first access terminal associated with the first hop-port. The method can further include determining that the first access terminal is a candidate for employing Space-Division Multiple Access (SDMA), and mapping the second-hop port and associating the second access terminal with the second hop-port when the second access terminal is also a candidate for employing SDMA.
摘要:
Transmission schemes that can flexibly achieve the desired spatial multiplexing order, spatial diversity order, and channel estimation overhead order are described. For data transmission, the assigned subcarriers and spatial multiplexing order (M) for a receiver are determined, where M≧1. For each assigned subcarrier, M virtual antennas are selected from among V virtual antennas formed with V columns of an orthonormal matrix, where V≧M. V may be selected to achieve the desired spatial diversity order and channel estimation overhead order. Output symbols are mapped to the M virtual antennas selected for each assigned subcarrier by applying the orthonormal matrix. Pilot symbols are also mapped to the V virtual antennas. The mapped symbols are provided for transmission from T transmit antennas, where T≧V. Transmission symbols are generated for the mapped symbols, e.g, based on OFDM or SC-FDMA. Different cyclic delays may be applied for the T transmit antennas to improve diversity.
摘要:
A method of managing macro network coverage among a plurality of repeaters deployed to extend coverage of one or more base stations may include receiving feedback information from at least two repeaters indicative of macro network coverage at locations corresponding to each repeater, determining a coverage status of the macro network based on the feedback information, and sending a control signal to at least one repeater instructing the repeater to adjust one or more operating parameters based on the determined coverage status.
摘要:
Estimation of channel characteristics and interference level in a time-varying multi-carrier multi-user systems is carried out concurrently. To perform the estimation, a multitude of data symbols and dedicated pilot symbols are transmitted over the channel. Next, an initial estimate value is selected for the interference level. The initial estimate value for the interference level is used together with the received pilot symbols to provide a first estimate of the channel. The first estimate of the channel is used to determine a new updated value for the interference level, which in turn, is used to update the value of the first estimate of the channel iteratively. The iterations continue until the iteratively updated values of the interference level and channel satisfy predefined limits. The data symbols and the final updated value of the channel are subsequently used to provide a second estimate for the channel.
摘要:
A channel structure has at least two channel sets. Each channel set contains multiple channels and is associated with a specific mapping of the channels to the system resources available for data transmission. Each channel set may be defined based on a channel tree having a hierarchical structure. To achieve intra-cell interference diversity, the channel-to-resource mapping for each channel set is pseudo-random with respect to the mapping for each remaining channel set. In each scheduling interval, terminals are scheduled for transmission on the forward and/or reverse link. The scheduled terminals are assigned channels from the channel sets. Multiple terminals may use the same system resources and their overlapping transmissions may be separated in the spatial domain. For example, beamforming may be performed to send multiple overlapping transmissions on the forward link, and receiver spatial processing may be performed to separate out multiple overlapping transmissions received on the reverse link.
摘要:
A channel estimation system comprises a filtering component that selectively scales a plurality of carriers as a function of location of the plurality of carriers within a frequency band, wherein the plurality of carriers comprises at least one data carrier and at least one pilot carrier. A component thereafter extrapolates an observation from the at least one pilot carrier, wherein a channel is estimated as a function of the extrapolated observation. The scaling of the carriers facilitates reducing a flooring effect associated with channel estimation. The filtering component can be employed at a transmitter and/or at a receiver, and can be activated and/or deactivated as a function of a sensed data packet type.
摘要:
Systems and methodologies are described that facilitate equalization of received signals in a wireless communication environment. Using multiple transmit and/or receive antennas and MIMO technology, multiple data streams can be transmitted within a single tone. During equalization, receivers can separate data received within a tone into individual data streams. The equalization process generally is computationally expensive. Equalizer functions include the inverse operation, which can be computed using the fast square root method; however, the fast square root method involves large numbers of computations for a set of matrices, where the size of a matrix in the set of matrices increases with the number of transmit or receive antennas. Utilizing a modification of the fast square root method, a subset of the elements of the matrices can be selected and updated to reduce the number and/or complexity of computations.
摘要:
A method of user power offset estimation for a wireless communication system is disclosed. Dedicated pilot symbols transmitted over at least one time-frequency region for a user are received. Power offset of the user is estimated based on the received dedicated pilot symbols.
摘要:
Each transmitter is assigned a time-only pilot code, a frequency-only pilot code, or a time-frequency pilot code to use for pilot transmission. The pilot codes may be pseudo-random, orthogonal, and/or cyclic-shift codes. To obtain a channel estimate for a transmitter using a time-frequency pilot code composed of a time-only code and a frequency-only code, a receiver multiplies a set of received symbols for each symbol period with a set of code values for the frequency-only code to obtain a set of detected symbols and performs an IDFT on the set of detected symbols to obtain an initial impulse response estimate. The receiver performs code matching on multiple initial impulse response estimates derived for multiple symbol periods with the time-only code to obtain a final impulse response estimate for the desired transmitter. The receiver retains the first L channel taps and zeroes out remaining channel taps, where L is the expected channel length.
摘要:
Pilot transmission and channel estimation techniques for an OFDM system with excess delay spread are described. To mitigate the deleterious effects of excess delay spread, the number of pilot subbands is greater than the cyclic prefix length. This “oversampling” may be achieved by using more pilot subbands in each symbol period or different sets of pilot subbands in different symbol periods. In one channel estimation technique, first and second groups of received pilot symbols are obtained for first and second pilot subband sets, respectively, and used to derive first and second frequency response estimates, respectively. First and second impulse response estimates are derived based on the first and second frequency response estimates, respectively, and used to derive a third impulse response estimate having more taps than the number of pilot subbands in either set.