摘要:
A control means controls an imaging means for taking an image of a test object by a magnetic resonance, the test object being placed in an imaging space, and a transfer means that moves the test object, and on the basis of a difference (moving distance) between a position of the transfer means at the time of receiving a command of pausing the imaging and a position of the transfer means at the time of resuming the imaging, the control means controls the position of the transfer means or the position for imaging at the time of resuming, in such a manner that missing of data 503 caused by the difference can be compensated. With this configuration, it is possible to provide an MRI apparatus that is provided with an imaging pause function, and even when the pause function is activated, there is data consistency between the data before the pausing and the data after the resuming, thereby obtaining a high quality image.
摘要:
A control means controls an imaging means for taking an image of a test object by a magnetic resonance, the test object being placed in an imaging space, and a transfer means that moves the test object, and on the basis of a difference (moving distance) between a position of the transfer means at the time of receiving a command of pausing the imaging and a position of the transfer means at the time of resuming the imaging, the control means controls the position of the transfer means or the position for imaging at the time of resuming, in such a manner that missing of data 503 caused by the difference can be compensated. With this configuration, it is possible to provide an MRI apparatus that is provided with an imaging pause function, and even when the pause function is activated, there is data consistency between the data before the pausing and the data after the resuming, thereby obtaining a high quality image.
摘要:
There is provided an MRI apparatus that is capable of imaging ON/OFF in response to a biological gating signal and changing conditions for imaging, even while the moving bed imaging is performed, and further reducing a load on a subject to be examined, which is caused by fluctuations in the bed moving velocity. A controller that controls a bed to transport the examined subject in a static magnetic field and a unit to apply an RF magnetic field and a gradient magnetic field for imaging configures settings so that the bed moving velocity is kept constant considering an entire imaging time, and further controls the magnetic applying unit for applying the RF magnetic field and the gradient magnetic field so that a moving velocity of the FOV (imaging area) in the subject coordinate system is made different from the bed moving velocity.
摘要:
A magnetic resonance imaging method for fully automatically forming a water/fat separated image by calculation after acquiring data on images of different echo times, wherein the unwrapping of a phase map showing the distribution of the phase rotation due to the inhomogeneous static magnetic field is repeated so as to determine the distribution of the inhomogeneous static magnetic field by using an index used for judging whether or not the unwrapping is properly being performed, and wherein during the formation of a water/fat separated image with correction of the static magnetic field, the unwrapping is automatically and properly performed in correcting the static magnetic field, and the water/fat images are automatically discriminated.
摘要:
The present invention provides a magnetic resonance imaging system capable of performing spectrum measurement even when a magnetic resonant frequency changes during MRS measurement. A time-varying rate of a water magnetic resonant frequency is measured in advance before the MRS measurement. The amount of change in water magnetic resonant frequency during the MRS measurement is predicted from the measured time-varying rate. With the predicted value as the reference, a transmission frequency of an RF magnetic field irradiated in a signal suppression pulse sequence, a transmission frequency of an RF magnetic field for excitation and inversion and a received frequency at the detection of a magnetic resonance signal in a sequence of the MRS measurement are respectively set. A high-precision spectrum measurement is hence enabled.
摘要:
To provide a diagnostic apparatus utilizing nuclear magnetic resonance suitable for interventional MRI which is not limited as to selection of an imaging section and an phase-encoding axis, the reception coil thereof includes three loop coils arranged so as to surround an object to be examined and to be within a plane including a line segment parallel to a static magnetic field direction, and two surface coils arranged in the vicinity of the surface of the object within a plane including a line segment perpendicular to the static magnetic field direction. In the reception coil, two or more sub-coils have nonuniform sensitivity profiles along an arbitrary axis. Therefore, the reception coil configured to have sensitivity throughout the imaging areas can be realized.
摘要:
A plurality of signal acquisition steps 103 to 106 are executed continuously in succession to an inversion longitudinal magnetization generation step 101 for generating inversion magnetization by applying inversion RF pulses to an object. Similar process steps are iterated in another inversion longitudinal magnetization step in a slice non-selecting mode, and the difference is determined between image data acquired by the first signal acquisition steps 103 to 106 and image data acquired by the second signal acquisition steps 107 to 110 to acquire a perfusion image. In this instance, the mode of applying the gradient magnetic field is made different in each signal acquisition step, and images of a plurality of slices are acquired. The process steps described above are iterated while the correspondence relation between an inversion time TI and a selected slice is changed. An image having different inversion times can thus be acquired within a short time for a plurality of slices. Consequently, an image reflecting the time change of perfusion and having a high diagnostic value can be acquired over a broad range.
摘要:
A nuclear magnetic resonance imaging apparatus and an imaging method. A slice gradient magnetic field and a first radio frequency (RF) pulse magnetic field or the first and second RF pulse magnetic fields are applied to an object so as to selectively excite nuclear spins of the object and to generate echo signals by the application of the magnetic fields. The echo signals are measured by applying to the object a read gradient magnetic field whose polarity inverses continuously at least a plurality of times. A plurality of first RF pulse magnetic fields are generated in one pulse sequence. These RF pulse magnetic fields excite the nuclear spins of a plurality of different slices, and a plurality of different slices are selected. Sets of a plurality of echo signals from different slices are defected whenever the read gradient magnetic field is applied.
摘要:
With minimizing extension of imaging time, the B1 non-uniformity reducing effect of RF shimming is maximized for an imaging section of an arbitrary axis direction and an arbitrary position. B1 distributions are measured for only several sections of one predetermined direction, and a radio frequency magnetic field condition that maximizes the B1 non-uniformity reducing effect for an imaging section of an arbitrary direction and an arbitrary position is calculated from the B1 distribution data. For example, after B1 distributions of only several sections of the AX direction are measured, the optimal radio frequency magnetic field condition for an imaging section of an arbitrary position for the AX direction is obtained by interpolation with optimal radio frequency magnetic field conditions calculated from B1 distributions of two sections near the imaging section, and the optimal radio frequency magnetic field condition for an imaging section of an arbitrary position for the SAG or COR direction is obtained by using only B1 values of a crossing region with the imaging section extracted from the B1 distributions.
摘要:
There is provided a technique for securing a comfortable examination space in a tunnel type MRI apparatus without increasing the manufacturing cost of the MRI apparatus and sacrificing performance thereof. In an RF coil provided with a hollow-shaped outer conductive element and a strip-shaped conductive element disposed along the outer conductive element in the axial direction, meander lines constituting the strip-shaped conductive element are disposed at uneven distances from the outer conductive element to secure an internal space. In order to obtain uniform sensitivity at the center of the RF coil, the strip-shaped conductive element is constituted with N of connected meander lines, and length of the strip-shaped conductive element is adjusted so that, in the strip-shaped conductive element resonating at resonance frequency of the antenna, nodes are formed in a number of (M+1)×N−1, wherein M is 0 or a natural number of 1 or larger.