Abstract:
A sequence of codes are provided for potential assignment to a user in a wireless hybrid time division multiple access (TDMA)/code division multiple access (CDMA) communication system. At least one timeslot is selected to support the communication. For each selected timeslot, at least one code is selected. If more than one code is selected, the selected codes are consecutive in the provided codes sequence. For at least one of the selected timeslots, an identifier of a first and last code of the selected consecutive codes is signaled. The user receives the signaled identifier and uses the selected consecutive codes, as identified, to support the communication.
Abstract:
The present invention is a base station which receives a communication signal over an uplink common control channel and measures interference on the uplink common control channel in response to the received signal. A channel quality measuring device included in the base station monitors the channel quality of the uplink common control channel and provides a quality margin for the communication signal. A spreading device, then, transmits the quality margin over a downlink control channel in response to the quality margin.
Abstract:
A code division multiple access base station is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over the shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated as a channel response matrix at the multiple of the chip rate. A padded version of a spread data vector of a size corresponding to the multiple chip rate using a column of the channel response matrix, the estimated channel response matrix, the samples and a fourier transform. The spread data vector is estimated by eliminating elements of the padded version so that the estimated spread data vector is of a size corresponding to the chip rate.
Abstract:
A code division multiple access user equipment is used in receiving a plurality of data signals over a shared spectrum. Each received data signal experiences a similar channel response. A combined signal of the received data signals is received over a shared spectrum. The combined signal is sampled at a multiple of the chip rate. A channel response is estimated. A first element of a spread data vector is determined using the combined signal samples and the estimated channel response. A factor from the first element determination is used to determine remaining elements of the spread data vector. Data of the data signals is estimated using the determined elements of the spread data vector.
Abstract:
A base station employing weighted open loop power control receives a communication and measures its received power level. Based on, in part, the received communication's power level and the transmission power level of the communication, a path loss estimate is determined. A quality of the path loss estimate is also determined. The transmission power level for a communication from the base station is based, in part, on weighting the path loss estimate in response to the quality of the estimate.
Abstract:
A particular cell of a hybrid time division multiple access/code division multiple access communication system has a base station and a plurality of user requirements. Timeslots having unacceptable interference for the uplink are estimated. Timeslots having unacceptable interference for the downlink are estimated. An availability list is produced. The availability list indicates available uplink and downlink timeslots having acceptable interference levels. Uplink and downlink timeslots are assigned using the availability list.
Abstract:
A user equipment (UE) receives a reference signal over a physical reference channel using a reference channel receiver and obtains reference power levels from the reference signal. The interference level is obtained and a path loss is calculated in response to the reference signal. Transmit power is then determined for an allocated uplink control channel based, at least in part, upon said path loss and said interference level.
Abstract:
A transmitting station performs closed loop power control prior to a transmission pause. A closed loop transmission power level prior to the pause is determined. A reference signal is received and a received power level of the reference signal prior to and during the transmission pause is determined. The measured reference signal received power levels are compared to a transmit power level of the reference signals to produce a pathloss estimate of the reference signal prior to and during the transmission pause. A new transmit power level is determined by adjusting the closed loop transmission power level by a change between the prior to and during pathloss estimates. A transmission power level of the transmitting station is set to the determined new transmit power level. A communication is transmitted at the set transmission power level.
Abstract:
A method for a base station to optimize radio resource utilization and adjust data rates in a wireless digital communications system. The base station communicates with a plurality of user equipment mobile terminals (UEs) and employs adaptive modulation and coding (AM&C) to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those mobile terminals (UEs) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
K data signals, or bursts, are transmitted over a shared spectrum in a code division multiple access communication format. A combined signal is received and sampled over the shared spectrum, as a plurality of received vector versions. The combined signal includes the K transmitted data signals. A plurality of system matrices and an associated covariance matrix using codes and estimated impulse responses of the K data signals is produced. Each system matrix corresponds to a received vector version. The system and covariance matrices are extended and approximated as block circulant matrices. A diagonal matrix of each of the extended and approximated system and covariance matrices are determined by prime factor algorithm-fast Fourier transform (PFA-FFT) without division of the matrix. The received vector versions are extended. A product of the diagonal matrices and the extended received vector versions is taken. An inverse block discrete Fourier transform is performed by a PFA-FFT on a result of the product to produce the estimated data of the K data signals.