Abstract:
A bipolar forceps is provided. The bipolar forceps includes a housing having a shaft including an electrically conductive distal end. A drive assembly is operable to reciprocate an actuation tube within the shaft. A portion of the actuation tube is electrically conductive. An end effector assembly operatively connects to the shaft and includes a pair of first and second jaw members biased in an open configuration. The first and second jaw members are pivotable about a living hinge. Distal reciprocation of the actuation tube causes each of the jaw members towards one another about the living hinge. One of the jaw members is in electrical communication with the distal end of the shaft and the other jaw member is in selective electrical communication with a distal end of the actuation tube such that when the jaw members are in a closed configuration a closed loop electrical circuit is formed.
Abstract:
An endoscopic forceps is provided and includes a housing having a shaft that extends therefrom. The shaft including a stationary cam pin at a distal end thereof and an elongated cam slot operably disposed adjacent the stationary cam pin. An end effector assembly operatively connected to a distal end of the shaft and including a pair of first and second jaw members pivotably coupled to one another. One or both of the first and second jaw members is movable relative to the other jaw member from an open position, to a clamping position. The movable jaw member having a drive pin defined therein and movable within the cam slot on the shaft. The movable jaw member has a second cam slot operably disposed thereon and operably coupled to the stationary cam pin on the shaft.
Abstract:
A surgical instrument is provided and includes a housing having a shaft. An end effector assembly is operatively connected to a distal end of the shaft and has a pair of first and second jaw members that are movable relative to one another. A drive assembly operably couples to a handle assembly associated with the housing and is configured to impart movement of a respective jaw member when the handle assembly is actuated. A spring component operably associated with each of the jaw members is configured to provide a sealing force at the jaw members.
Abstract:
An endoscopic bipolar forceps includes a housing having a shaft affixed thereto, the shaft including jaw members at a distal end thereof. The shaft includes a longitudinal axis defined therethrough and the jaw members are adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. The forceps also includes a drive assembly which moves the jaw member relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for manipulating tissue. A movable handle is included which is rotatable about a pivot to force the drive assembly to move the jaw members between the first and second positions. The pivot is located a fixed distance above the longitudinal axis. A knife assembly is also included which has a movable knife bar having a generally t-shaped proximal end dimensioned to operatively engage a corresponding slot defined within the housing, the slot being dimensioned to guide the movement of the knife bar during translation thereof.
Abstract:
An electrosurgical apparatus includes a housing having a shaft extending therefrom. The shaft includes an end effector assembly at a distal end thereof. The end effector assembly includes first and second fixed jaw members in spaced relation relative to one another. An electrically conductive tissue sealing plate is operatively coupled to each of the jaw members. The electrically conductive seal plates are adapted to connect to an electrosurgical energy source and communicate with a control system. The control system is configured to regulate the delivery of electrosurgical energy from the source of electrosurgical energy to the tissue sealing plate on each of the jaw members. A guide channel is disposed between the pair of fixed jaw members and extends proximally along the shaft from the distal end thereof. A knife is disposed at a proximal end of the guide channel and is configured to selectively cut tissue in a distal direction.
Abstract:
An endoscopic bipolar forceps includes a housing having a shaft affixed thereto the shaft including jaw members at a distal end thereof. The shaft includes a longitudinal axis defined therethrough and the jaw members are adapted to connect to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. A movable handle is included that is rotatable about a pivot to force a drive assembly to move the jaw members between the first and second positions. The pivot is located a fixed distance above the longitudinal axis. A cutting assembly is included having at least one blade element disposed within one of the jaw members. The blade element is selectively moveable from a first recessed position within the jaw member to a second extended position for cutting tissue. The cutting assembly also includes a remote actuator which reciprocates a camming element to move the blade element between the first and second positions.