Abstract:
An exemplary electro-wetting display (EWD) device includes an upper substrate, a lower substrate opposite to the upper substrate, a plurality of side walls interposed between the upper and lower substrates and cooperating with the upper and lower substrates to form a plurality of pixel units, a first polar liquid disposed in the pixel units, a second, colored, non-polar liquid disposed in the pixel units and being immiscible with the first liquid, and a plurality of scanning lines disposed on the lower substrate and parallel to and spaced apart from each other for providing scanning signals to the pixel units. Each of the pixel units corresponds to at least part of a corresponding previous scanning line.
Abstract:
An exemplary three-dimensional display device includes a flat panel display and a light regulating sheet positioned on the flat panel display. Light beams emitted from the flat panel display and input to the light regulating sheet are adjusted by the light regulating sheet and output from the light regulating sheet at predetermined angles relative to their input angles. The light regulating sheet includes at least one light regulating ring divided into a plurality of light regulating units. The flat panel display includes a plurality of display units corresponding to the plurality of light regulating units. Each display unit displays a two-dimensional image of an object viewed from a predetermined viewing angle position. Each light regulating unit limits the two-dimensional image to within a viewing angle range corresponding to the predetermined viewing angle position, and the two-dimensional images of the object displayed in the display units are different from each other.
Abstract:
An exemplary three-dimensional display device includes a flat panel display and a light regulating sheet positioned on the flat panel display. Light beams emitted from the flat panel display and input to the light regulating sheet are adjusted by the light regulating sheet and output from the light regulating sheet at predetermined angles relative to their input angles. The light regulating sheet includes at least one light regulating ring divided into a plurality of light regulating units. The flat panel display includes a plurality of display units corresponding to the plurality of light regulating units. Each display unit displays a two-dimensional image of an object viewed from a predetermined viewing angle position. Each light regulating unit limits the two-dimensional image to within a viewing angle range corresponding to the predetermined viewing angle position, and the two-dimensional images of the object displayed in the display units are different from each other.
Abstract:
A method for making a liquid crystal display screen is provided. The method includes the following steps. A touch panel and a thin film transistor panel are provided, and the touch panel includes at least one TP carbon nanotube layer. The thin film transistor panel includes a plurality of thin film transistors; each of the thin film transistors comprises a TFT carbon nanotube layer. A first polarizer is applied on a surface of the touch panel. Additionally, a liquid crystal layer is provided to be placed between the first polarizer and the thin film transistor panel.
Abstract:
A liquid crystal display screen includes an upper component, a bottom component and a liquid crystal layer. The upper component includes a touch panel. The touch panel includes a first conductive layer. The first conductive layer includes a transparent carbon nanotube structure. The bottom component includes a thin film transistor panel. The thin film transistor panel includes a plurality of thin film transistors. Each of the plurality of thin film transistors includes a semiconducting layer, and the semiconducting layer includes a semiconducting carbon nanotube structure. The liquid crystal layer is located between the upper component and the lower component.
Abstract:
A soldering system includes a circuit board having first soldering terminals, a soldering object having second soldering terminals, soldering blocks disposed between the circuit board and the soldering object for electrically interconnecting the first soldering terminals and the second soldering terminals respectively, and a supporting structure supporting the soldering object and having a height that determines the height of the solder blocks. A related soldering method is also provided.
Abstract:
An exemplary diffuser plate includes a diffuser film. The diffuser film includes a plurality of diffusion particles distributed therein. A refractive index of the outer shell of each diffusion particle exceeds that of the inner surface of each diffusion particle.
Abstract:
The video data output from the dot-inversion driver is re-arranged in the present invention. According this re-arranged method, the video data output from the even data lines or odd data lines is delayed for one scan line scan time. Then, the re-arranged video data are applied to the liquid crystal display structure whose thin film transistors connected with the same scan line are arranged in alternatingly up-down form to store row-inversion driving data in the pixel region.
Abstract:
An exemplary liquid crystal display device (300) includes a TFT substrate (311) and a color filter substrate (312) opposite to the TFT substrate; a space (313) defined between the TFT and the color filter substrates; and a liquid crystal layer (314) and a plurality of bumps (315, 316) located in the space. The bumps respectively extend from inner surfaces of the TFT and the color filter substrates. The bumps extending from the TFT substrate are arranged in first horizontal rows, and the bumps extending from the color filter substrate are arranged in second horizontal rows. Each of the first rows of bumps is slightly above a corresponding second row of bumps or each of the first rows of bumps is slightly below a corresponding second row of bumps. The staggered bumps prevent the LCD panel from generating picture distortion and gravity mura, even when the liquid crystal is weighty.
Abstract:
The present invention discloses a liquid crystal display with a narrow frame area. The liquid crystal display comprises a first substrate, plural scan line metal layers and plural data line metal layers formed on the first substrate, a second substrate attached to the first substrate by applying a seal at a periphery of one of the first substrate and the second substrate, and an opaque layer formed on the second substrate at the inside of the seal. In which, the scan line metal layers and the data line metal layers extend to the outside of the seal, and overlap with each other to form an integrated black matrix on the first substrate, which overlaps with the opaque layer on the second substrate so as to prevent a light leakage in an overlapped area thereof and narrow down the frame area.