Abstract:
A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
Abstract:
A soldering system includes a circuit board having first soldering terminals, a soldering object having second soldering terminals, soldering blocks disposed between the circuit board and the soldering object for electrically interconnecting the first soldering terminals and the second soldering terminals respectively, and a supporting structure supporting the soldering object and having a height that determines the height of the solder blocks. A related soldering method is also provided.
Abstract:
A display device includes a circuit board connecting structure. The circuit board connecting structure includes a first circuit board, a soldering layer, and a second circuit board. The first circuit board includes a baseboard and a plurality of parallel elongate first electrodes defined at a predetermined area. The second circuit board includes a plurality of parallel elongate second electrodes positioned at the predetermined area. The second electrodes are electrically connected to the corresponding first electrodes via the soldering layer. A space defined by the projection of the second electrodes to the baseboard of the first circuit board is filled in by the soldering layer.
Abstract:
The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
Abstract:
The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.
Abstract:
A soldering system includes a circuit board having first soldering terminals, a soldering object having second soldering terminals, soldering blocks disposed between the circuit board and the soldering object for electrically interconnecting the first soldering terminals and the second soldering terminals respectively, and a supporting structure supporting the soldering object and having a height that determines the height of the solder blocks. A related soldering method is also provided.
Abstract:
The present disclosure relates to a method for making a plurality of touch panels one time. The method includes following steps. A substrate is provided. The substrate has a surface defining a number of target areas with each including two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. A carbon nanotube film is formed on the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on each target area so that part of the carbon nanotube film is exposed from a space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film on each trace area. The exposed carbon nanotube film on each trace area is removed to obtain a plurality of transparent conductive layers spaced from each other. A number of touch panels is obtained by cutting the substrate.
Abstract:
An exemplary embodiment of touch display device includes a touch panel and a signal processing circuit. The touch panel includes a plurality of touch sensing units, and each touch sensing unit includes a touch sensing element and a coupling sensing element. The signal processing circuit is electrically connected to the touch sensing element and the coupling sensing element. The touch sensing element provides a touch signal to the signal processing circuit, the coupling sensing element provides a coupling signal to the signal processing circuit, and the signal processing circuit processes the touch signal according to the coupling signal to filter an interference signal of the touch signal. A touch display device using the touch panel is also described.
Abstract:
A liquid crystal display screen includes an upper component, a bottom component and a liquid crystal layer. The upper component includes a touch panel. The touch panel includes a first conductive layer. The conductive layer includes a transparent carbon nanotube structure, and the transparent carbon nanotube structure includes a plurality of metallic carbon nanotubes. The bottom component includes a thin film transistor panel. The liquid crystal layer is located between the upper component and the lower component.
Abstract:
A method for making a liquid crystal display screen is provided. The method includes the following steps. A touch panel and a thin film transistor panel are provided, and the touch panel includes at least one TP carbon nanotube layer. The thin film transistor panel includes a plurality of thin film transistors; each of the thin film transistors comprises a TFT carbon nanotube layer. A first polarizer is applied on a surface of the touch panel. Additionally, a liquid crystal layer is provided to be placed between the first polarizer and the thin film transistor panel.