Abstract:
An exemplary electro-wetting display (EWD) device includes an upper substrate, a lower substrate opposite to the upper substrate, a plurality of side walls interposed between the upper and lower substrates and cooperating with the upper and lower substrates to form a plurality of pixel units, a first polar liquid disposed in the pixel units, a second, colored, non-polar liquid disposed in the pixel units and being immiscible with the first liquid, and a plurality of scanning lines disposed on the lower substrate and parallel to and spaced apart from each other for providing scanning signals to the pixel units. Each of the pixel units corresponds to at least part of a corresponding previous scanning line.
Abstract:
An exemplary electro-wetting display (EWD) device includes an upper substrate, a lower substrate opposite to the upper substrate, a plurality of side walls interposed between the upper and lower substrates and cooperating with the upper and lower substrates to form a plurality of pixel units, a first polar liquid disposed in the pixel units, a second, colored, non-polar liquid disposed in the pixel units and being immiscible with the first liquid, and a plurality of scanning lines disposed on the lower substrate and parallel to and spaced apart from each other for providing scanning signals to the pixel units. Each of the pixel units corresponds to at least part of a corresponding previous scanning line.
Abstract:
An exemplary embodiment of touch display device includes a touch panel and a signal processing circuit. The touch panel includes a plurality of touch sensing units, and each touch sensing unit includes a touch sensing element and a coupling sensing element. The signal processing circuit is electrically connected to the touch sensing element and the coupling sensing element. The touch sensing element provides a touch signal to the signal processing circuit, the coupling sensing element provides a coupling signal to the signal processing circuit, and the signal processing circuit processes the touch signal according to the coupling signal to filter an interference signal of the touch signal. A touch display device using the touch panel is also described.
Abstract:
A repair structure for repairing data lines and scan lines comprised in a thin film transistor-liquid crystal display (TFT-LCD) is provided. The repair structure includes a first conducting repair structure formed simultaneously with a gate conducting structure of the thin film transistor-liquid crystal display, an insulating layer formed on the first conducting repair structure, and a second conducting repair structure formed on the insulating layer simultaneously with a data conducting structure of the thin film transistor-liquid crystal display and connected with the data conducting structure, wherein a plurality of overlap regions having the insulating layer between the fist conducting repair structure and the second conducting repair structure are formed, wherein when the data conducting structure positioned in the overlap regions is broken, the insulating layer in the overlap regions is destroyed to make electric connection between the first conducting repair structure and the second conducting repair structure.
Abstract:
An LCD panel testing method. The method comprises forming jump lines in a predetermined region on the substrate between the signal lines via mask design when forming TFT LCD arrays, and thus forming a plurality of signal-line groups each with two signal lines coupled by the jump lines. Thereupon, an array tester sequentially tests two pixels corresponding to the signal lines in the signal groups. If one of the feedback signals from the signal groups does not meet a predetermined standard, it is determined that one or both pixels in the signal group are defective. The defective pixel or pixels are then identified using an electronic microscope to test two pixels at the same time. In this way, the number of probe pins and tests performed is halved. The probe pin size is also thus less restrictive due to larger probe pin intervals. Consequently, yield is greatly increased.
Abstract:
A touch panel includes a first substrate, a second substrate, a first conductive film disposed on the first substrate, and a second conductive film disposed on the second substrate and juxtaposed with the first conductive film in a face-to-face manner. The second conductive film has a first resistivity in a first direction and a second resistivity in a second direction different from the first direction. The first resistivity is greater than the second resistivity.
Abstract:
A patterned conductive element includes a substrate having a surface, an adhesive layer located on the surface, and a patterned carbon nanotube layer located on the adhesive layer. Part of the patterned carbon nanotube layer is embedded in the adhesive layer, and the other part of the patterned carbon nanotube layer is exposed from the adhesive layer.
Abstract:
A method for making a conductive film exhibiting electric anisotropy comprises forming a nanomaterial on a substrate, the nanomaterial having a cluster of interconnected nanounits, each of which being substantially transverse to the substrate and having one end bonded to the substrate. The method further includes stretching the nanounits along a first direction to remove the nanomaterial from the substrate so as to form a conductive film having strings of interconnected nanounits, where the nanounits of the strings substantially extend in the first direction. A conductive plate and a method for making the same is also disclosed, where the method further comprises attaching the conductive film to a second substrate.
Abstract:
The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
Abstract:
The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.