Abstract:
A network of nodes interconnected by links has content filtering specified at certain nodes, and routing of packet connections through the network is generated based on the specified content-filtering nodes. The network is specified via a content-filtering node placement method and a network-capacity maximization method so as to apply content filtering to packets for substantially all traffic (packet streams) carried by the network.
Abstract:
The invention includes a method and apparatus for generating a link transmission schedule for handling traffic variation in wireless networks without dynamic scheduling or routing. The method includes determining fixed traffic capacities associated with respective wireless links of a wireless network according to a routing algorithm, and generating, using the routing algorithm and the fixed traffic capacities, a link transmission schedule including at least one condition by which traffic is transmitted using each of the network links. The link transmission schedule is adapted to remain substantially fixed during dynamic traffic changes. The routing algorithm may be a two-phase routing algorithm in which traffic is distributed by each node in the wireless network to every node in the wireless network using traffic split ratios. For two-phase routing, fixed traffic capacities may be determined using ingress and egress traffic capacities and traffic split ratios associated with respective nodes in the wireless network.
Abstract:
A load-balanced network architecture is disclosed in which a traffic flow deliverable from a source node to a destination node via intermediate nodes is split into parts, and the parts are distributed to respective ones of the intermediate nodes. Path delay differences for the parts are substantially equalized by delay adjustment at one or more of the intermediate nodes, and packets of one or more of the parts are scheduled for routing from respective ones of the intermediate nodes to the destination node based on arrival times of the packets at the source node.
Abstract:
A method for supporting recovery from failure of a link in a network of nodes interconnected by links comprises: (a) selecting an intermediate node between an ingress point and an egress point of the network, wherein the intermediate node minimizes the sum of (i) a capacity constraint between the ingress point and the intermediate node and (ii) a capacity constraint between the intermediate node and the egress point; wherein the selection identifies a first path structure between the ingress point and the intermediate node, and a second path structure between the intermediate node and the egress point, each path structure comprising a primary path and one or more link backup detours protecting each link on the primary path; (b) implementing, during a first routing phase, a first routing method for routing a fraction of a service level between the ingress point and the intermediate node along the primary path of the first path structure; and (c) implementing, during a second routing phase, a second routing method for routing a fraction of the service level between the intermediate node and the egress point along the primary path of the second path structure.
Abstract:
A method for supporting recovery from failure of a path in a network of nodes interconnected by links comprises: (a) selecting an intermediate node between an ingress point and an egress point of the network, wherein the intermediate node minimizes the sum of (i) a capacity constraint between the ingress point and the intermediate node and (ii) a capacity constraint between the intermediate node and the egress point; wherein the selection identifies a first link-disjoint path set between the ingress point and the intermediate node, and a second link-disjoint path set between the intermediate node and the egress point, each link-disjoint path set comprising a backup path and at least one primary path; (b) implementing, during a first routing phase, a first routing method for routing a fraction of a service level between the ingress point and the intermediate node along each of the one or more primary paths of the first link-disjoint path set; and (c) implementing, during a second routing phase, a second routing method for routing a fraction of the service level between the intermediate node and the egress point along each of the one or more primary paths of the second link-disjoint path set.
Abstract:
Exemplary methods, systems, and computer program products describe selecting a gateway based on health and performance information of a plurality of gateways. The techniques describe gateways advertising health and performance information, computing devices creating a table of this health and performance information, and selecting a gateway using the table. In response to changes in the health and performance information, the computing device may select a different gateway. The process allows network traffic load to be distributed across a plurality of gateways. This process further provides resilience by allowing a plurality of active gateways to substitute for a non-functioning gateway.
Abstract:
In one embodiment, a method for supporting recovery from failure of a node in a network of nodes interconnected by links A set of two or more intermediate nodes (excluding the failed node) between an ingress point and an egress point is selected. Next, based on available bandwidth of the network, a non-zero fraction of the service level to route from the ingress point to each intermediate node is determined. Packets are then routed in two phases by: (1) determining one or more paths from the ingress point to each intermediate node for routing the corresponding fraction of the service level, and (2) determining one or more paths from each intermediate node to the egress point for routing the corresponding fraction of the service level.
Abstract:
Exemplary methods, systems, and computer program products describe selecting a gateway based on health and performance information of a plurality of gateways. The techniques describe gateways advertising health and performance information, computing devices creating a table of this health and performance information, and selecting a gateway using the table. In response to changes in the health and performance information, the computing device may select a different gateway. The process allows network traffic load to be distributed across a plurality of gateways. This process further provides resilience by allowing a plurality of active gateways to substitute for a non-functioning gateway.
Abstract:
A computer-implemented method of computing throughput of a data-routing scheme for a network of nodes interconnected by links and having at least one ingress point and at least one egress point. The method includes: deriving a polynomial-size linear program from a combination of a first linear program and a second linear program and solving the polynomial-size linear program. The first linear program has infinite constraints and minimizes maximum-link utilization of a link in a path between the ingress point and the egress point. The second linear program determines whether any constraint of the first linear program is violated.
Abstract:
A number of techniques are described for routing methods that improve resistance to faults affecting groups of links subject to common risks. One of these techniques accounts for failure potentials in physical networks by considering shared risk link groups separately from performance and costs metrics in determining a primary routing path and a backup path. A shared risk link group (SRLG) is an attribute attached to a link to identify edges that have physical links in common and can therefore be simultaneously disrupted due to a single fault. Another technique considers node disjointness and provides a solution of two paths that are as node disjoint as possible and minimizes administrative costs. The techniques may further be combined in a priority order thereby providing a solution of at least two paths that are strictly SRLG disjoint, as node-disjoint as possible, and have minimum administrative costs. Due to the priority order of evaluation and typical network physical configurations of links, with the links associated common fault SRLGs, the priority ordering technique is very efficient in determining at least two paths for routing between a source and destination node.