摘要:
An integrated circuit memory cell (10) is formed with a P-N junction polycrystalline floating gate (13) with a lightly boron doped on the source side (13B) and a heavily arsenic or phosphorous doped on the drain side (13A) plus the channel region (Ch) . The cells (10) are formed in an array at a face of a semiconductor body (22), each cell including a source (11) and including a drain (12). An improved over-erase characteristic is achieved by forming a P-N junction (JU) in the floating gate (13). Use of a P-N junction (JU) in polycrystalline floating gate (13) prevents the cell (10) from going into depletion, causes a tighter distribution of erased threshold voltages V.sub.T, and improves device life because fewer electrons travel through the gate oxide (30).
摘要:
A method for fabricating a CMOS integrated circuit (IC) and ICs therefrom includes the steps of providing a substrate having a semiconductor surface, wherein the semiconductor surface has PMOS regions for PMOS devices and NMOS regions for NMOS devices. A gate dielectric layer is formed on the PMOS regions and NMOS regions. An original gate electrode layer is formed on the gate dielectric layer. A gate masking layer is applied on the gate electrode layer. Etching is used to pattern the original gate electrode layer to simultaneously form original gate electrodes for the PMOS devices and NMOS devices. Source and drain regions are formed for the PMOS devices and NMOS devices. The original gate electrodes are removed for at least one of the PMOS devices and NMOS devices to form trenches using an etch process, such as a hydroxide-based solution, wherein at least a portion and generally substantially all of the gate dielectric layer is preserved. A metal comprising replacement gates is formed in the trenches, and fabrication of the IC is completed.
摘要:
An improved method of forming a fully silicided (FUSI) gate in both NMOS and PMOS transistors of the same MOS device is disclosed. In one example, the method comprises forming a first silicide in at least a top portion of a gate electrode of the PMOS devices and not over the NMOS devices. The method further comprises concurrently forming a second silicide in at least a top portion of a gate electrode of both the NMOS and PMOS devices, and forming a FUSI gate silicide of the gate electrodes. In one embodiment, the thickness of the second silicide is greater than the first silicide by an amount which compensates for a difference in the rates of silicide formation between the NMOS and PMOS devices.
摘要:
A method for fabricating a CMOS integrated circuit (IC) and ICs therefrom includes providing a substrate having a semiconductor surface including PMOS regions for PMOS devices and NMOS regions for NMOS devices. A gate stack including a gate electrode layer is formed on a gate dielectric layer in or on both the PMOS regions and the NMOS regions. An n-type doping is used to create n-type wet etch sensitized regions on opposing sides of the gate stack in both the PMOS and said NMOS regions. Wet etching removes the n-type wet etch sensitized regions in (i) at least a portion of said PMOS regions to form a plurality of PMOS source/drain recesses or (ii) in at least a portion of said NMOS regions to form a plurality of NMOS source/drain recesses, or (i) and (ii). At least one of a compressive strain inducing epitaxial layer is formed in the plurality of PMOS source/drain recesses and a tensile strain inducing epitaxial layer is formed in the plurality of NMOS source/drain recesses. The fabrication of the IC is then completed.
摘要:
A method of forming an integrated circuit having an NMOS transistor and a PMOS transistor is disclosed. The method includes performing pre-gate processing in a NMOS region and a PMOS region over and/or in a semiconductor body, and depositing a polysilicon layer over the semiconductor body in both the NMOS and PMOS regions. The method further includes performing a first type implant into the polysilicon layer in one of the NMOS region and PMOS region, and performing an amorphizing implant into the polysilicon layer in both the NMOS and PMOS regions, thereby converting the polysilicon layer into an amorphous silicon layer. The method further includes patterning the amorphous silicon layer to form gate electrodes, wherein a gate electrode resides in both the NMOS and PMOS regions.
摘要:
A method for making CMOS transistors that includes forming a NMOS transistor and a PMOS transistor having an undoped polysilicon gate electrode and a hardmask. The method also includes forming a layer of insulating material and then removing the hardmasks and a portion of the layer of insulating material. A layer of silicidation metal is formed and a first silicide anneal changes the undoped polysilicon gate electrodes into partially silicided gate electrodes. Dopants of a first type and a second type are implanted into the partially silicided gate electrode of the PMOS and NMOS transistors and a second silicide anneal is performed to change the doped partially silicided gate electrodes into fully silicided gate electrodes.
摘要:
A method for fabricating a semiconductor device includes forming a silicided gate utilizing a CMP stack. The CMP stack includes a first liner formed over the underlying semiconductor device and a first dielectric layer formed over the first liner layer. The first dielectric layer is formed to approximately the height of the gate. A second liner layer is formed over the first dielectric layer. Since the first dielectric layer is formed to approximately the height of the gate, the second liner over the moat regions is at approximately the height of the first liner over the gate. A CMP process is performed to expose the first liner over the top of the gate. Since the first dielectric layer is formed to the height of the gate, a portion of the second liner remains over the moat regions after the CMP process. Afterwards, the gate is exposed and a silicidation is performed to create a silicided gate.
摘要:
Semiconductor devices and fabrication methods are provided, in which metal transistor replacement gates are provided for CMOS transistors. The process provides dual or differentiated work function capability (e.g., for PMOS and NMOS transistors) in CMOS processes.
摘要:
A method of forming a fully silicided semiconductor device with independent gate and source/drain doping and related device. At least some of the illustrative embodiments are methods comprising forming a gate stack over a substrate (the gate stack comprising a polysilicon layer and a blocking layer), and performing an ion implantation into an active region of the substrate adjacent to the gate stack (the blocking layer substantially blocks the ion implantation from the polysilicon layer).
摘要:
A method of forming fully silicided NMOS and PMOS semiconductor devices having independent polysilicon gate thicknesses, and related device. At least some of the illustrative embodiments are methods comprising forming an N-type gate over a semiconductor substrate (the N-type gate having a first thickness), forming a P-type gate over the semiconductor substrate (the P-type gate having a second thickness different than the first thickness), and performing a simultaneous silicidation of the N-type gate and the P-type gate.