Abstract:
In one embodiment, a generator includes a rotor configured to rotate in cooperation with a stator to generate electrical power. A sensor, which is supported by the rotor, is configured to generate a trigger signal indicative of a position of the rotor. A communication interface is configured to receive the trigger signal from the sensor of the rotor and receive data indicative of an output of the generator. A controller supported by the rotor or configured to perform a phase analysis of the trigger signal and the output of the generator and calculate a power angle for the generator based on the phase analysis.
Abstract:
A generator system may include two or more generators electrically connected through a generator bus. A controller receives operation data from a first generator. The operation data may describe a power flow from a second generator to the first generator. From the operation data, either a loss of speed control or a loss of voltage control may be identified at the second generator. The controller may generate a command for the second generator based on the loss of speed control or the loss of voltage control.
Abstract:
A fuel delivery system may be utilized in an internal combustion engine or a generator engine. The fuel delivery system includes a fuel injector and a venturi. The venturi provides a force for delivering the fuel into the manifold of the engine, and the fuel injector provides metering to control the amount of fuel delivered into the manifold of the engine. In one example, the fuel delivery system includes a first chamber configured to enclose a gaseous fuel, a second chamber configured to direct a flow of air through the venturi, and a plunger. The plunger is controlled to selectively connect and disconnect the first chamber and the second chamber to control the flow of the gaseous fuel into the second chamber under a differential pressure of the venturi.
Abstract:
A generator system may include two or more generators electrically connected through a generator bus. A controller receives operation data from a first generator. The operation data may describe a power flow from a second generator to the first generator. From the operation data, either a loss of speed control or a loss of voltage control may be identified at the second generator. The controller may generate a command for the second generator based on the loss of speed control or the loss of voltage control.
Abstract:
A generator system may include redundant control. The generator system may include any combination of redundant controllers, redundant communication paths, or other redundant control. A generator system may include an electrical bus, a first generator controller, and the second generator controller. The first generator controller may control a first generator breaker for connecting a first generator to the electrical bus and configured to control an external breaker for selectively connecting the electrical bus to an external source. The second generator controller may control a second generator breaker for connecting a second generator to the common bus and configured to control the external breaker for selectively connecting the electrical bus to the external source.
Abstract:
Torque is balanced among generators in a system of parallel generators. Control of the generators may be performed by one or more individual generator controllers or by a centralized controller. The torque on two or more generators is detected. The controller calculates a torque target based on the torque on the two generators or other operating characteristics of the system. The operation of at least one of the generators is controlled based on the torque target.
Abstract:
A set of generators are connected in parallel using a generator bus. At least one of the generators is associated with a controller. The controller detects an overload condition on the generator bus caused by a load and disconnects an initial generator from the generator bus in response to the overload condition. The initial generator continues to run during the overload condition after disconnecting from the generator bus but alternator excitation may be removed from the initial generator. The controller initiates starting one or more additional generator without alternator excitation. The controller also initiates connecting the initial generator and the one or more additional generators to the generator bus connected to the load. Alternator excitation is applied to the initial generator and the one or more additional generator so that adequate power may be applied to the load.
Abstract:
Some embodiments relate to a system for measuring power produced by a power source. The system includes a first voltage sensor for sensing a first voltage difference between a first voltage and a second voltage and a second voltage sensor for sensing a second voltage difference between a third voltage and the second voltage. The system further includes a first current sensor for sensing a current difference between a first current and a second current, and a second current sensor for sensing a current difference between a third current and the second current. The system further includes a power measuring device that determines the power produced by the power source using the first and second voltage differences and the first and second current differences.
Abstract:
Systems and methods include operating a power system in a first state, and detecting an anticipated load increase. The systems and methods further include changing operation of the power system from the first state to a second state upon detection of the anticipated load increase.
Abstract:
A system and method for paralleling generators is described. A timing signal indicative of a waveform reference point of at least a first generator of the generators is received at a second generator. The receiving generator determines a closing time for a second generator breaker associated with the second generator in response the timing signal from the first generator. The first generator breaker and the second generator breaker, or an aggregated generator breaker is closed to a bus at the closing time.