Abstract:
The present invention relates to a method and apparatus for measuring interference in a wireless communication system. User equipment (UE) receives a common reference signal (CRS) from a first domain having the same cell identity and a channel state information (CSI) reference signal (RS) from a second domain including a configuration of the CSI RS designated by the UE. The UE measures interference for the second domain on the basis of the received CRS and CSI RS.
Abstract:
A method of transmitting data in a wireless communication system is provided. The method includes generating duplicate data by using repetition coding, the duplicate data being the same as original data, shifting the phase of the duplicate data, and transmitting the original data and the phase-shifted duplicate data. The duplicate data is mapped to a modulation symbol having a different size or phase as that of the original data, thus to reduce the PAPR unlike the general repetition coding.
Abstract:
The present invention provides a method for reference signal dropping and an apparatus for the method. A method for CSI-RS dropping comprises receiving first CSI-RS configuration information including sub-frame information which is transmission resource information of a first CSI-RS and through which the first CSI-RS information is transmitted and resource element information which contains the first CSI-RS; receiving second CSI-RS configuration information including sub-frame information which is transmission resource information of a second CSI-RS and through which the second CSI-RS is transmitted and resource element information which contains the second CSI-RS; and in case transmission resources of the first CSI-RS according to the first CSI-RS configuration and transmission resources of the second CSI-RS according to the second CSI-RS configuration overlap with each other, determining according to a priority order whether a CSI-RS received from the overlapping transmission resources corresponds to the first or the second CSI-RS.
Abstract:
Provided are a method and an apparatus for measuring channel quality indicator in a wireless communication system. User equipment receives, from a base station, at least one of a cell-specific reference signal (CRS) which is cell-specifically transmitted and a channel state information reference signal (CSI RS). The user equipment also receives, from the base station, a demodulation reference signal (DMRS) which is user equipment-specifically transmitted in an enhanced physical downlink control channel (e-PDCCH) region constituted in a physical downlink shared channel (PDSCH) region. The terminal measures the CQI based on either at least one of the CRS and the CSI RS or the DMRS.
Abstract:
Disclosed are a method and a device for allocating a search space of a control channel in a subframe. A method for monitoring downlink control information comprises the steps of: acquiring first control information on a first enhanced-physical downlink control channel (e-PDCCH) by monitoring a common search space in a first slot of a subframe; and acquiring second control information on a second e-PDCCH by monitoring a user equipment (UE)-specific search space in a second slot of the subframe. Thus, a terminal can obtain cell-specific information through an e-PDCCH even without a legacy physical downlink control channel (PDCCH).
Abstract:
The present invention relates to a method and device for measuring interference in a wireless communication system. User equipment (UE) receives interference measuring indicators form a base station and measures interference based on the interference-measuring indicators by using all or some resource elements (RE) that correspond to zero-power channel state information (CSI) reference signal (RS) configurations.
Abstract:
Provided are a method and a device for searching for a control channel of a terminal in a multi-node system. Said method comprises the steps of: receiving user equipment specific reference signal (URS) setting information for setting URSs in a first area and a second area which are divided according to a resource allocation method, wherein said first area is a non-interleaving area in which channels are allocated to local radio resources, and said second area is an interleaving area in which channels are allocated to distributed radio resources; and searching for a control channel in said first area, wherein said user equipment attempts to detect said control channel by using each of a plurality of candidate URSs which can be set by said URS setting information.