Abstract:
A method is provided for receiving a downlink signal at a downlink reception entity in a wireless communication system. Downlink control information is received by demodulating a Physical Downlink Control Channel (PDCCH) in a first resource block (RB) pair within an RB bundle by using a first Demodulation Reference Signal (DMRS). Downlink data is received by demodulating a Physical Downlink Shared Channel (PDSCH) in one or more second RB pairs scheduled by the downlink control information within the RB bundle by using a second DMRS based on an assumption that a same precoder is applied to the scheduled one or more second RB pairs.
Abstract:
A method of transmitting a control signal of a relay station is provided. The method includes: receiving a control signal and data from a base station in a first subframe; and transmitting an acknowledgement/negative acknowledgement (ACK/NACK) signal for the data to the base station in a second subframe, wherein a radio resource for transmitting the ACK/NACK signal is determined by a radio resource to which the control signal received in the first subframe is allocated and by a logical physical uplink control channel (PUCCH) index received by using a higher layer signal.
Abstract:
A method is provided for performing a hybrid automatic repeat request (HARQ) by a user equipment (UE). An uplink (UL) grant for a first subframe of a second serving cell is received through a first serving cell. UL data in the first subframe of the second serving cell is transmitted according to the UL grant. When a not-acknowledgement (NACK) for the UL data is received through a physical HARQ indicator channel (PHICH) in a subframe i of the first serving cell, the UE performs a non-adaptive retransmission for the UL data in a second subframe of the second serving cell. When a PHICH resource corresponding to the UL data is not present in the subframe i, the UE does not perform the non-adaptive retransmission in the second subframe of the second serving cell.
Abstract:
A method and a user equipment (UE) configured with one or more cells for feeding back channel information are discussed. The method according to an embodiment includes receiving information on a maximum number of ranks; transmitting first channel information generated based on rank information; and transmitting second channel information which is generated based on the same rank information as the rank information used for generating the first channel information. The maximum number of ranks is used to determine the rank information.
Abstract:
A communication method in a wireless communication system, the method includes receiving a first control channel including first scheduling information on a first physical downlink shared channel (PDSCH); receiving a second control channel including second scheduling information on a second PDSCH; determining whether the first PDSCH and the second PDSCH are scheduled to be overlapped on at least one subframe; and determining which one of the first PDSCH and the second PDSCH is to be received on the at least one overlapped subframe.
Abstract:
Provided are a method for monitoring a control channel in a wireless communication system and a wireless device using the same. The wireless device monitors a downlink control channel inside a search space, which is defined by at least one pair of physical resource blocks (PRB). Indexing with respect to a plurality of enhanced control channel element (ECCE) differs depending on an ECCE-to-EREG (enhanced resource element group) mapping method.
Abstract:
A method for a base station (BS) to perform a hybrid automatic repeat request (HARQ). The BS transmits an uplink (UL) grant for a first subframe of a second serving cell through a first serving cell. The BS receives UL data based on the UL grant in the first subframe, transmits an acknowledgement/non-acknowledgement (ACK/NACK) for the UL data through a physical HARQ indicator channel (PHICH) in subframe i of the first serving cell and receives non-adaptively retransmitted UL data in a second subframe of the second serving cell if a NACK for the UL data has been transmitted through the PHICH in the subframe i of the first serving cell. The first serving cell and the second serving cell use different UL-DL configurations.
Abstract:
Provided is a data receiving method in a wireless communication system and a wireless device using the same. A wireless device monitors a downlink control channel, and receives a downlink reference signal to be used in a demodulation of a downlink transmission block based on the resource to be used in the monitoring the downlink control channel.
Abstract:
A communication method in a wireless communication system, and a wireless device therefore are discussed. The method according to one embodiment includes receiving a first control channel including first scheduling information on a first physical downlink shared channel (PDSCH) to be received in a first subframe; receiving a second control channel including second scheduling information on a second PDSCH to be received in a second subframe; determining whether the first subframe in which the first PDSCH is to be received is overlapped with the second subframe in which the second PDSCH is to be received; and if the first subframe is determined as being overlapped with the second subframe, determining a valid subframe for receiving at least one of the first PDSCH and the second PDSCH.
Abstract:
A method for feeding back channel information, and a user equipment (UE) therefore are discussed. The method according to one embodiment includes, if one or more cells are configured, performing a first feedback process and a second feeding process. The first feedback process is configured to transmit first channel information including rank information. The second feedback process is configured to transmit second channel information generated based on the same rank information as the rank information of the first feedback process.