Abstract:
Provided is a method of transmitting ACK/NACK in a TDD-based wireless communication system. The method includes: receiving M downlink subframes associated with an uplink subframe n in each of two serving cells; determining four candidate resources based on the M downlink subframes received in each of the two serving cells; and transmitting an ACK/NACK response for the M downlink subframes by using one resource selected from the four candidate resources in the uplink subframe n, wherein the two serving cells includes a first serving cell and a second serving cell, and wherein among the four candidate resources, a first resource and a second resource are associated with a PDSCH or a SPS release PDCCH for releasing semi-persistent scheduling received in the first serving cell, and a third resource and a fourth resources are associated with a PDSCH received in the second serving cell.
Abstract:
Provided is a method of transmitting ACK/NACK in a TDD-based wireless communication system. The method includes: receiving M downlink subframes associated with an uplink subframe n in each of two serving cells; determining four candidate resources based on the M downlink subframes received in each of the two serving cells; and transmitting an ACK/NACK response for the M downlink subframes by using one resource selected from the four candidate resources in the uplink subframe n, wherein the two serving cells includes a first serving cell and a second serving cell, and wherein among the four candidate resources, a first resource and a second resource are associated with a PDSCH or a SPS release PDCCH for releasing semi-persistent scheduling received in the first serving cell, and a third resource and a fourth resources are associated with a PDSCH received in the second serving cell.
Abstract:
A method is provided of receiving a control channel at a user equipment in a wireless communication system. A subframe including a plurality of search spaces is received. Each of the plurality of search spaces is associated with a respective carrier indicator field (CIF) value. At least one control channel candidate for a cell indicated by a first CIF value is monitored in two or more of the plurality of search spaces for control channel candidates having a same downlink control information (DCI) format size and different CIF values.
Abstract:
A method is presented of reporting control information in a wireless communication system in which M downlink time divisional duplex (TDD) subframes are associated with an uplink TDD subframe. A user equipment (UE), supporting at least one cell including a primary cell, receives a radio resource control (RRC) message indicating resource allocation information used for a first PUCCH format. The UE receives a first physical downlink shared channel (PDSCH) and a second PDSCH in one of the M downlink TDD subframes, wherein the second PDSCH is received with a downlink assignment index (DAI). The UE selects a physical uplink control channel (PUCCH) format among a plurality of PUCCH formats including the first PUCCH format and a second PUCCH format, and transmits a positive-acknowledgement (ACK)/negative-acknowledgement (NACK) signal for the first and second PDSCHs by using the selected PUCCH format.
Abstract:
A method and a user equipment (UE) for transmitting control information in a wireless communication system are discussed. The method according to one embodiment includes receiving a parameter which indicates whether transmission of a hybrid automatic repeat request acknowledgement (HARQ-ACK) on a physical uplink control channel (PUCCH) and a sounding reference signal (SRS) in one subframe is configured; if the parameter is true, transmitting, in a primary component carrier (CC), the PUCCH, which coincides in a same subframe as the SRS, by using a shortened PUCCH format carrying at least one of the HARQ-ACK and a positive scheduling request (SR); and if the parameter is false, transmitting the PUCCH by using a normal PUCCH format, while not transmitting, in a secondary CC, the SRS which coincides in the same subframe as the PUCCH. The shortened PUCCH format is a shortened PUCCH format 1/1a/1b or a shortened PUCCH format 3.
Abstract:
An uplink transmission method and a user equipment in a wireless communication system are discussed. The method according to one embodiment includes generating uplink control information (UCI) which includes at least one of an automatic repeat request (HARQ) acknowledgement(ACK)/negative-acknowledgement (NACK) signal, a channel quality indicator (CQI) and a scheduling request (SR); transmitting the UCI on a physical uplink control channel (PUCCH); and transmitting a demodulation reference signal (DMRS) for the PUCCH. The DMRS is generated based on one or more values selected from among a set {0, 3, 6, 8, 10}.
Abstract:
A method is provided for controlling transmission powers by a communication apparatus in a wireless communication system supporting a plurality of component carriers. When a sounding reference symbol (SRS) transmission overlaps with a physical uplink control channel (PUCCH) transmission in a time domain, the communication apparatus checks as to whether a total of a PUCCH transmission power for the PUCCH transmission on a first component carrier and a SRS transmission power for the SRS transmission on a second component carrier exceeds a maximum transmission power configured for the communication apparatus. The SRS transmission is dropped by the communication apparatus if the total of the PUCCH transmission power and the SRS transmission power exceeds the maximum transmission power configured for the communication apparatus.
Abstract:
A method for a base station (BS) to perform a hybrid automatic repeat request (HARQ). The BS transmits an uplink (UL) grant for a first subframe of a second serving cell through a first serving cell. The BS receives UL data based on the UL grant in the first subframe, transmits an acknowledgement/non-acknowledgement (ACK/NACK) for the UL data through a physical HARQ indicator channel (PHICH) in subframe i of the first serving cell and receives non-adaptively retransmitted UL data in a second subframe of the second serving cell if a NACK for the UL data has been transmitted through the PHICH in the subframe i of the first serving cell. The first serving cell and the second serving cell use different UL-DL configurations.
Abstract:
A method and a user equipment (UE) for receiving a power headroom report in a wireless access system that supports a carrier aggregation are discussed. The method according to an embodiment includes transmitting by an eNB to a UE an uplink transmission grant allocating uplink resources on a predetermined subframe in an anchor uplink component carrier (UL CC); and receiving the power headroom report by the eNB from the UE. The power headroom report includes a power headroom value for the anchor UL CC, when the eNB has configured the UE for a simultaneous physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmission. The method further includes reporting the power headroom value to a base station. The power headroom value is calculated.
Abstract:
A method of reporting control information in a wireless communication system in which M downlink time divisional duplex (TDD) subframes are associated with an uplink TDD subframe. A user equipment (UE) receives resource allocation information used for a first physical uplink control channel (PUCCH) format. The UE selects a PUCCH format among a plurality of PUCCH formats including the first PUCCH format and a second PUCCH format. The second PUCCH format is selected if the UE receives a first physical downlink shared channel (PDSCH) in one of the M downlink TDD subframes on the primary cell. The UE receives a second PDSCH with a downlink assignment index (DAT) in one of the M downlink TDD subframes on the primary cell. The UE does not receive a first physical downlink control channel (PDCCH) corresponding to the first PDSCH on the primary cell.