摘要:
A method measures a physical function, such as a second-order optical nonlinearity profile, or a temporal waveform of a laser pulse. The method includes forming a symmetric composite function by superimposing the physical function with a substantially identical physical function. The method further includes obtaining a Fourier transform of the symmetric composite function. The method further includes calculating an inverse Fourier transform of the obtained Fourier transform. The calculated inverse Fourier transform provides information regarding the physical function.
摘要:
Long-period fiber gratings are placed in a predetermined pattern along a double-clad optical fiber having an outer cladding, an inner cladding and a core. The core is doped with an optically active material such as, for example, a rare earth ion or other laser ion. The long-period fiber gratings couple light between a mode of the inner cladding and a mode of the core. As a consequence of increased coupling into the core resulting from the use of long-period fiber gratings, the length of double-clad optical fiber needed to transfer light between the inner cladding and the core is reduced.
摘要:
In a method of amplifying optical input signals over a wide bandwidth, the optical input signals are applied to an optical waveguide made from a rare-earth-doped amorphous material (e.g., erbium-doped Bi4Ge3O12 material). The optical input signals include optical signals having wavelengths over a range of approximately 125. Pump light is applied to the optical waveguide to cause the waveguide to provide optical gain to the optical input signals. The optical gain causes the optical signals to be amplified within the waveguide to provide amplified optical signals over the approximately 125-nanometer range, including, in particular, optical signals having wavelengths at one end of the range and optical signals having wavelengths at a second end or the range.
摘要:
The instability of the mean wavelength of a superfluorescent fiber source (SFS) is reduced by randomizing the polarization of light from a pump source or by using polarization maintaining components. In one embodiment, the polarization of a pump source is made more random, leading to greater stability of the mean wavelength of the SFS, with an output mean wavelength that is stable to better than 3 ppm for full rotation of the pump polarization state. In another embodiment, the polarization of optical radiation throughout the device is kept substantially constant by using polarization maintaining fiber and components, thereby leading to enhanced mean wavelength stability of the SFS.
摘要:
A fiber optic acoustic sensor array is based upon a Sagnac interferometer rather than being based upon Mach-Zehnder interferometers as in known acoustic sensor arrays. The fiber optic acoustic sensor array is used to detect acoustic waves in water. By basing the sensor array on the Sagnac interferometer rather than on a Mach-Zehnder interferometer, the sensor array has a stable bias point, has reduced phase noise, has a larger dynamic range, and allows a broadband signal source to be used rather than requiring a more expensive narrowline laser. A large number of acoustic sensors can be multiplexed into the architecture of the Sagnac interferometer.
摘要:
The present invention significantly improves the signal to noise ratio (SNR) in a passive optical array by adding erbium-doped optical amplifiers between the sensor couplings to offset the coupler splitting losses. Optical amplifiers are inserted between the sensor couplings along the signal path, and the gain of the amplifiers is designed to offset losses due to the previous coupling. The overall SNR can be maintained without significant degradation even for large numbers of sensors. In a first aspect of the present invention, the amplifiers are located along the distribution and return buses directly after the couplers, except possibly for the last sensor. In a second aspect of the present invention, the amplifiers are located directly before the couplers. The optical amplifiers preferably are made of short lengths of erbium-doped fiber spliced into the distribution and return buses. Improvements can be made to the SNR when the distribution bus coupling ratios are set at optimal values. The value of the optimal coupling ratio depends upon the amplifier configuration, the excess loss and other configuration parameters. In alternative embodiments, sensors are grouped into parallel configurations along the distribution and return buses to increase the number of sensors without a corresponding increase in the number of amplifiers and with an improvement in system performance to a certain point.
摘要:
There is disclosed a new superfluorescent source comprising a long fiber doped with a lasing material presenting three-level transitions, such as Erbium. Due to the ground state signal absorption present in three-level systems, the source of the present invention can achieve backward signal quantum efficiencies well in excess of the limit of 0.5 exhibited by four-level systems. The source can be used in a Sagnac interferometer which may comprise an optical isolator because of possible high feedback.
摘要:
The present invention discloses a thermally stable rare-earth doped fiber source comprising an active medium such as Erbium or Neodymium. The thermal stability of the mean wavelength of such a source is determined by three contributions as expressed by the following differential equation: ##EQU1## The first term is the intrinsic temperature dependence of the active medium, the second term is the pump power dependence and the third term is a contribution that arises from the dependence of the emission wavelength on the pump wavelength. The method of the present invention minimizes the temperature dependence on the mean wavelength by using the above equation and optimizing the values of the pump power and the pump wavelength so that the three contributions in the governing equation cancel each other.
摘要:
An amplifier for use with fiber optic systems comprises a neodymium YAG crystal placed in series with a signal-carrying optical fiber. The ND:YAG crystal is supplied by the optical fiber with both the signal to be amplified, and pumping illumination. The pumping illumination is coupled onto the optical fiber by a multiplexing coupler which is used to combine the signal to be amplified and illumination from a pumping illumination source onto a single optical fiber. The pumping illumination inverts the neodymium ions within the ND:YAG crystal. The signal to be amplified propagates through this crystal to stimulate emission of coherent light from the neodymium ions, resulting in amplification of the signal. Because this arrangement permits the ND:YAG crystal to be end-pumped with pumping illumination, and because the length of the ND:YAG crystal may be substantially greater that the absorption length for the crystal at the wavelength of the pumping illumination, virtually all of the pumping illumination may be absorbed within the ND:YAG crystal and used for amplification of the signal carried by the optical fiber.
摘要:
An amplifier for use with fiber optic systems comprises a neodymium YAG crystal placed in series with a signal-carrying optical fiber. The ND:YAG crystal is supplied by the optical fiber with both the signal to be amplified, and pumping illumination. The pumping illumination is coupled onto the optical fiber by a multiplexing coupler which is used to combine the signal to be amplified and illumination from a pumping illumination source onto a single optical fiber. The pumping illumination inverts the neodymium ions within the ND:YAG crystal. The signal to be amplified propagates through this crystal to stimulate emission of coherent light from the neodymium ions, resulting in amplification of the signal. Because this arrangement permits the ND:YAG crystal to be end-pumped with pumping illumination, and because the length of the ND:YAG crystal may be substantially greater than the absorption length for the crystal at the wavelength of the pumping illumination, virtually all of the pumping illumination may be absorbed within the ND:YAG crystal and used for amplification of the signal carried by the optical fiber.