Abstract:
Provided is a high-output surface-emitting laser capable of reducing effects on reflectance of an upper reflection mirror in a single transverse mode. The surface-emitting laser includes plural semiconductor layers, laminated on a substrate, which includes a lower semiconductor multilayer reflection mirror, an active layer, and an upper semiconductor multilayer reflection mirror, wherein the lower or upper semiconductor multilayer reflection mirror includes a first semiconductor layer having a two-dimensional photonic crystal structure comprised of a high and low refractive index portions which are arranged in a direction parallel to the substrate, and wherein a second semiconductor layer laminated on the first semiconductor layer includes a microhole which reaches the low refractive index portion, the cross section of the microhole in the direction parallel to the substrate being smaller than the cross section of the low refractive index portion formed in the first semiconductor layer.
Abstract:
A surface emitting laser which oscillates at a wavelength X of a blue band, including a photonic crystal layer including a photonic crystal structure, an active layer provided on one surface of the photonic crystal layer, and an electrode provided on the other surface of the photonic crystal layer for injecting electric current into the active layer. The photonic crystal structure has a thickness of 100 nm or more. A laser beam is emitted toward a direction opposite to a side of the photonic crystal layer on which the electrode is provided.
Abstract:
A surface emitting laser comprises an underlayer, an active layer formed on the underlayer, a slab layer formed on the active layer and having a photonic crystal structure optically combined with the active layer, and a metal thin film formed on the slab layer and having a periodic fine structure; and enabling taking-out of the light beam propagating in a layer-plane direction in the slab layer through the metal thin film.
Abstract:
A structure includes a photonic crystal layer including a first member having a high refractive index in which a plurality of holes are periodically arranged, and a second member having a low refractive index. A third member is disposed on the first member. The third member has a refractive index higher than 1.0 and lower than the refractive index of the first member. The holes of the photonic crystal layer have a depth in the range of 20% to 80% of the thickness of the first member.