Abstract:
A structure having first and second layers is disposed on a substrate. The second layer is disposed on the first layer, is compressively strained, and comprises the alloy including germanium and tin. The structure comprises first and second members spaced a distance from each other along a direction, a strip located between the first and second members and extending along an axis intersecting the direction, and arms connecting the first and second members to a first end of the strip. The first and second members, the strip and the arms comprise respective portions of the first and second layers. A portion of the first layer at the strip and arms is removed such that the strip and arms become suspended and the arms remain anchored to the first layer via the first and second members. Tensile strain is induced in the alloy via the arms. The alloy may perform lasing.
Abstract:
A method for fabricating a semiconductor device on a semiconductor substrate, wherein the semiconductor device is adapted to provide target lasing properties, the method includes creating, a mask layer over the semiconductor substrate, the mask layer having at least one opening to expose a region of the semiconductor substrate, etching using a first etching process the exposed region, utilizing inductively coupled plasma with preselected first set of parameters to obtain a baseline mesa profile, the baseline mesa profile having a baseline mesa angle, re-etching using a second etching process the etched region, utilizing inductively coupled plasma with preselected second set of parameters, to alter the baseline mesa profile to obtain a requisite mesa profile having a requisite mesa angle defined by the target lasing properties and the requisite mesa angle being different from the baseline mesa angle, removing the mask layer and defining a p-n junction for the semiconductor substrate.
Abstract:
There is herein described a process for providing improved device performance and fabrication techniques for semiconductors. More particularly, the present invention relates to a process for forming features, such as pixels, on GaN semiconductors using a p-GaN modification and annealing process. The process also relates to a plasma and thermal anneal process which results in a p-GaN modified layer where the annealing simultaneously enables the formation of conductive p-GaN and modified p-GaN regions that behave in an n-like manner and block vertical current flow. The process also extends to Resonant-Cavity Light Emitting Diodes (RCLEDs), pixels with a variety of sizes and electrically insulating planar layer for electrical tracks and bond pads.
Abstract:
A monolithic diode laser arrangement contains a plurality of individual emitters which are arranged adjacent to one another on a common supporting substrate and which in each case have contact windows for electrical contact which are arranged on the respective individual emitters on a front face opposite the supporting substrate. A method for producing such a diode laser arrangement and a laser device having such a diode laser arrangement are further described.
Abstract:
A reproducible method for producing a resonant structure of a distributed-feedback semiconductor laser exhibiting a narrow waveguide of the order of some ten micrometers, the production of the diffraction grating being carried out subsequent to the step of producing the strip is provided. In a last step, a diffraction grating is engraved as a function of a desired precise wavelength.
Abstract:
A semiconductor device includes an n-type ohmic contact layer, cathode and anode electrodes, p-type and n-type modulation doped quantum well (QW) structures, and first and second ion implant regions. The anode electrode is formed on the first ion implant region that contacts the p-type modulation doped QW structure and the cathode electrode is formed by patterning the first and second ion implant regions and the n-type ohmic contact layer. The semiconductor device is configured to operate as at least one of a diode laser and a diode detector. As the diode laser, the semiconductor device emits photons. As the diode detector, the semiconductor device receives an input optical light and generates a photocurrent.
Abstract:
A surface emitting laser element includes a lower Bragg reflection mirror; an upper Bragg reflection mirror; and a resonator region formed between the lower Bragg reflection mirror and the upper Bragg reflection mirror, and including an active layer. A wavelength adjustment region is formed in the lower Bragg reflection mirror or the upper Bragg reflection mirror, and includes a second phase adjustment layer, a wavelength adjustment layer and a first phase adjustment layer, arranged in this order from a side where the resonator region is formed. An optical thickness of the wavelength adjustment region is approximately (2N+1)×λ/4, and the wavelength adjustment layer is formed at a position where an optical distance from an end of the wavelength adjustment region on the side of the resonator region is approximately M×λ/2, where λ is a wavelength of emitted light, M and N are positive integers, and M is N or less.
Abstract:
Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.
Abstract:
A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
Abstract:
An optical device includes a ridge semiconductor laser element formed on a substrate, a first insulating film coating a lateral wall portion of a ridge structure of the ridge semiconductor laser element, and a second insulating film coating the ridge structure from above the first insulating film in an end portion region of the ridge structure. The second insulating film has a density lower than a density of the first insulating film.