Vehicle detection system
    61.
    发明授权

    公开(公告)号:US10795050B2

    公开(公告)日:2020-10-06

    申请号:US16233387

    申请日:2018-12-27

    Abstract: A vehicle detection system includes a transverse detector arm, two vertical detector arms, a radiation source, a plurality of transverse detectors, and a plurality of vertical detectors. The transverse detector arm may be disposed on the ground. Two vertical detector arms are disposed at both ends of the transverse detector arm. The radiation source is located above the transverse detector arm. A plurality of transverse detectors are disposed within the transverse detector arm and are laid along a length direction of the transverse detector arm for receiving ray emitted by the radiation source. The plurality of vertical detectors are symmetrically disposed on the two vertical detector arms, and each of the vertical detectors is disposed towards a center point of the radiation source for receiving ray emitted by the radiation source.

    X-ray detection method and X-ray detector

    公开(公告)号:US10724969B2

    公开(公告)日:2020-07-28

    申请号:US16175796

    申请日:2018-10-30

    Abstract: An X-ray detection method and an X-ray detector are provided. The X-ray detection method according to embodiments of the present disclosure includes: dividing an energy range of photons emitted by an X-ray source into a number N of energy windows, where N is an integer greater than 0; obtaining a weighting factor for each of the number N of energy windows based on linear attenuation coefficients of a substance of interest and a background substance of an imaging target; obtaining a weighting factor matrix for M output channels of an X-ray detector based on the weighting factor for each of the number N of energy windows, where M is an integer greater than 0; and obtaining output results of the M output channels based on the weighting factor matrix and numbers of photons having an energy range falling into individual energy windows of the number N of energy windows.

    Vehicle identification methods and systems

    公开(公告)号:US10607483B2

    公开(公告)日:2020-03-31

    申请号:US15300947

    申请日:2015-12-23

    Abstract: Disclosed is a vehicle identification method and system. The method includes: acquiring appearance information of an inspected vehicle; obtaining external features of the vehicle based on the appearance information; acquiring a transmission image of the vehicle and obtaining internal features of the vehicle from the transmission image; forming descriptions on the vehicle at least based on the external features and the internal features; and determining a vehicle model of the vehicle from a vehicle model databased by utilizing the descriptions. This method merges various types of modality information, especially introducing the transmission image, and combines the internal structure information with the appearance information, so that the present disclosure can identify a vehicle model more practically.

    Inspection system
    65.
    发明授权

    公开(公告)号:US10481294B2

    公开(公告)日:2019-11-19

    申请号:US15727637

    申请日:2017-10-09

    Abstract: The present invention relates to an inspection system. The inspection system comprises a base, a boom lifting mechanism provided on the base, and a boom mounting a detector. The boom lifting mechanism includes at least two support arms arranged sequentially. The at least two support arms include a base arm and a distal arm. The base arm is connected to the base, the boom is mounted on the distal arm, the inspection system has a scanning state and a transporting state, and two adjacent support arms of the at least two support arms are rotatably connected so that the height of the boom in the scanning state is different from that in the transporting state. The boom lifting mechanism of the inspection system of the present invention lifts the boom by rotatably connecting two adjacent support arms, and presents less required driving force compared to the lifting of the boom directly in a vertical direction in the prior art. Thus, there is less weight of the driving mechanism for driving the lifting of the boom, so as to reduce the self-weight of the inspection system.

    Methods, servers and systems for operating on security inspection data

    公开(公告)号:US10430669B2

    公开(公告)日:2019-10-01

    申请号:US15719309

    申请日:2017-09-28

    Abstract: A method, server and system for operating on security inspection data is disclosed. In one aspect, an example method performed by a server for operating on security inspection data includes receiving an operation request for target security inspection data from a client through a network. The target security inspection data is loaded from a storage server based on the operation request. Image processing on the loaded target security inspection data is performed. The processed target security inspection data or a graphic interface including the processed target security inspection data is encoded. The encoded target security inspection data or graphic interface is transmitted to the client through the network in a video stream.

    Photogrammetry system and photogrammetry method

    公开(公告)号:US10397491B2

    公开(公告)日:2019-08-27

    申请号:US14981947

    申请日:2015-12-29

    Abstract: The present invention relates to a photogrammetry system and method. The photogrammetry system comprises: photographing devices capable of photographing an object at a predetermined time interval; and, a data processing device capable of calculating an actual length of the object or a certain portion on the object according to a length of the object or a certain portion on the object in the images obtained by the photographing devices and a distance of the object in the two images, wherein the object moves at a speed V; the photographing devices photograph the object for two times at a time interval t; the distance of the object in the two images obtained by the two times of photographing is Dp; the length of the object or a certain portion on the object in the images is Lp; and, the actual length L of the object or a certain portion on the object may be obtained by the following formula: L = Lp × Vt Dp .

    Radiography systems based on distributed ray source

    公开(公告)号:US10371648B2

    公开(公告)日:2019-08-06

    申请号:US15301345

    申请日:2015-12-14

    Abstract: The present disclosure discloses a radiography system including: a ray source, comprising a plurality of X-ray generators which are distributed on one or more planes intersected with a moving direction of an object being inspected; a detector module comprising a plurality of detection units; a data collection circuit; a controller, configured to control at least two X-ray generators of the plurality of X-ray generators in the ray source to generate X-rays alternately such that the object is scanned by the generated X-rays; and control the detector module and the data collection circuit to respectively obtain detection data corresponding to the at least two X-ray generators; and a data processing computer, configured to create images of the object being inspected in view angles of the at least two X-ray generators based on the detection data. The above embodiments may implement a multi-view-angle perspective imaging system within a single scan plane by utilizing a distributed X-ray source and reuse of the detectors.

    Methods and apparatuses for estimating an ambiguity of an image

    公开(公告)号:US10332244B2

    公开(公告)日:2019-06-25

    申请号:US15610930

    申请日:2017-06-01

    Abstract: A method and an apparatus for estimating an image fuzziness are provided. The method may comprise: acquiring an image; obtaining a multi-scale representation of the image by performing a multi-scale transform on the image; calculating gradients of the image and a normalized histogram of the gradients at each scale based on the multi-scale representation; calculating error vectors between the normalized histogram of gradients at each scale and a normalized original histogram of gradients of the image; performing a weighted summing on the error vectors by using respective weights to obtain a summed result, wherein the weights are determined based on a reciprocal of the sums of squares of the gradients of the image at each scale; estimating the ambiguity of the image based on the summed result.

Patent Agency Ranking