Abstract:
A sampling probe, an automatic sampling device, and a container detection system are provided. The sampling probe includes: a mounting base; a housing mounted on the mounting base, a first accommodation chamber having an opening being defined in the housing, and an exhaust hole in communication with the first accommodation chamber and outside of the housing being formed in the housing; a coupling portion formed on an outer edge of the opening of the first accommodation chamber and formed to be hermetically coupled with an air outlet of a container; and a suction device mounted on the housing and configured to suck gas in the container into the first accommodation chamber through the air outlet. The sampling probe may collect the odor of toxic and harmful gases/hazardous chemicals inside the container at the air outlet of the container, without destroying the overall structure of the container.
Abstract:
A sampling tube bundle includes a tube bundle body and a joint assembly. The tube bundle body includes a gas sampling tube for transmitting sampling gas; a metal woven layer wrapping an outer circumference of the gas sampling tube; a heating pad comprising a heat tracing cable wrapping an outer circumference of the metal woven layer, for heating the sampling gas in the gas sampling tube; a flame resistant tape wound around an outer circumference of the of the heating pad; a plurality of signal transmission lines circumferentially spaced apart from one another are arranged outside the flame resistant tape; and a sheath located outside the signal transmission line. The joint assembly is arranged on an end of the tube bundle body, for connecting to an analysis device or a sampling device.
Abstract:
A gas chromatography-ion mobility spectrometry detector and a hyphenated apparatus, the gas chromatography-ion mobility spectrometry detector comprises a gas chromatography mechanism and an ion mobility spectrometry mechanism. The gas chromatography mechanism comprises a chromatographic column and a sample injection port. The ion mobility spectrometry mechanism comprises a mobility tube and a connecting body, while a metal connection plate of the connecting body comprises a chromatographic metal plate, an ion mobility metal plate and a semipermeable membrane; on the ion mobility metal plate there are provided an ion mobility sample and carrier gas inlet, an ion mobility sample chamber and a sample injection port; the chromatography sample chamber and the ion mobility sample chamber are separated by semipermeable membrane.
Abstract:
The present disclosure provides a dual-energy detection apparatus and method. The dual-energy detection apparatus includes an X-ray source configured to send a first X-ray beam to an object to be measured; a scintillation detector configured to work in an integration mode, and receive a second X-ray beam penetrating through the object to be measured to generate a first electrical signal; a Cherenkov detector configured to be located behind the scintillation detector, work in a counting mode, and receive a third X-ray beam penetrating through the scintillation detector to generate a second electrical signal; and a processor configured to output image, thickness and material information of the object to be measured according to the first electrical signal and the second electrical signal. The dual-energy detection method provided by the present disclosure may acquire an image of the object to be measured that is clearer and contains more information.
Abstract:
A detection apparatus and a detection method are disclosed. In one aspect, the detection apparatus includes a sampling device for collecting samples to be checked. It further includes a sample pre-processing device configured to pre-process the sample from the sampling device. It further includes a sample analyzing device for separating samples from the pre-processing device and for analyzing the separated samples. The detection apparatus is miniaturized and highly precise, and is capable of quickly and accurately detecting gaseous phase or particulate substances, and it has applications for safety inspections at airports, ports, and subway stations.
Abstract:
The present disclosure proposes a packaging structure for a metallic bonding based opto-electronic device and a manufacturing method thereof. According to the embodiments, the packaging structure for an opto-electronic device may comprise an opto-electronic chip and a packaging base. The opto-electronic chip comprises: a substrate having a first substrate surface and a second substrate surface opposite to each other; an opto-electronic device formed on the substrate; and electrodes for the opto-electronic device which are formed on the first substrate surface. The packaging base has a first base surface and a second base surface opposite to each other, and comprises conductive channels extending from the first base surface to the second base surface. The opto-electronic chip is stacked on the packaging base in such a manner that the first substrate surface faces the packaging base, and the electrodes formed on the first substrate surface of the opto-electronic chip are bonded with corresponding conductive channels in the packaging base.
Abstract:
The present disclosure provides an ion mobility spectrometer, which comprises: a power supply circuit, configured to provide a power supply voltage; a corona discharge configured to generate ions to be subjected to measurement, through corona discharge; an ion migration circuit configured to control migration of the ions; a migration zone structure configured to realize, under control of the ion migration circuit, mobility spectrum measurement of the ions which pass through the migration zone structure; a redundant charge extraction electrode arranged between the corona discharge structure and the migration zone structure, so that the ions which are generated by the corona discharge structure can pass therethrough to reach the migration zone structure; and a redundant charge extraction circuit, wherein the redundant charge extraction electrode is connected to the ground through the redundant charge extraction circuit.
Abstract:
The invention discloses a safety inspection detector and a goods safety inspection system. The safety inspection detector at least comprises a circuit board, a first housing, a second housing, a detection module and a connecting interface. The detection module and the connecting interface are mounted on the circuit board. The first housing is pressed and connected to a first surface of the circuit board, and the second housing is pressed and connected to a second surface of the circuit board. The first housing and the second housing can hermetically wrap the detection module and electronic devices on the circuit board, but bypass the connecting interface to realize leading-out and connection with related interconnected cables by utilizing the connecting interface. The housings can be used for sealing and protecting sensitive electronic devices in the detector, thus being moisture proof and preventing interference.
Abstract:
The present invention provides a corona discharge device, comprising a first electrode including: a first substantially cylindrical inner chamber portion and a second substantially conical inner chamber portion in communication with the first inner chamber portion, wherein the second inner chamber portion has a cross sectional area that gradually enlarges in a direction away from the first inner chamber portion. The present invention also provides an ion mobility spectrometer comprising: an ionization region; and the corona discharge device disposed in the ionization region. With the above construction and structure, the ion mobility spectrometer of the present invention has the advantages that extraction of ions is facilitated and a life time of the corona electrode is lengthened. In addition, the focusing and storing electrode is used to effectively shield interference of a corona discharge pulse, and to push and focus sample ions. A designed voltage control solution is used to achieve mobility differentiating of ions, while a corona pulse is shielded to prevent variation in an ion quantity due to the corona pulse, thereby achieving an effect of stabilizing mobility spectrum lines.
Abstract:
It is disclosed a scrubbing and sampling device, a card reader apparatus and a gate apparatus. The scrubbing and sampling device includes: a scrubbing and sampling portion including a first wheel and a second wheel, which are respectively capable of rotating around respective rotating axes, and a scrubbing conveyor belt tensioned by the first wheel and the second wheel and driven by rotation of the first wheel and the second wheel, to move between them; and an desorbing portion configured to desorb properties of an sample that is conveyed into the desorbing portion. The scrubbing conveyor belt is configured to move through the desorbing portion such that the desorbing portion desorbs the sample on the scrubbing conveyor belt when the scrubbing conveyor belt enters the desorbing portion.