Abstract:
Various embodiments may relate to an optoelectronic component, including an optoelectronic structure formed for providing an electromagnetic radiation, a measuring structure formed for measuring the electromagnetic radiation, and a waveguide formed for guiding the electromagnetic radiation. The optoelectronic structure and the measuring structure are optically coupled to the waveguide. The waveguide includes scattering centers distributed in a matrix, wherein the scattering centers are distributed in the matrix in such a way that part of the electromagnetic radiation is guided from the optoelectronic structure to the measuring structure.
Abstract:
Various embodiments may relate to a process for producing an optoelectronic component. In the process, a carrier is provided. A first electrode is formed upon the carrier. An optically functional layer structure is formed upon the first electrode. A second electrode is formed upon the optically functional layer structure. At least one of the two electrodes is formed by disposing electrically conductive nanowires on a surface on which the corresponding electrode is to be formed, and by heating the nanowires in such a way that they plastically deform.
Abstract:
A component module is disclosed that includes a component holder having a curved upper side, and a radiation-emitting component arranged in a curved shape on the upper side. In some implementations, the radiation emitting component includes a substrate. In some implementations, a neutral fiber runs outside the substrate.
Abstract:
The invention relates to an optoelectronic component, the optoelectronic component comprises a light-emitting layer stack, and an electrothermal protection element, which is connected to the layer stack in the component and has a temperature-dependent resistor.
Abstract:
A method of preventing an analysis of the material composition of an organic optoelectronic component includes: A) providing an organic optoelectronic component having a functional component part and a camouflage layer, and B) determining an overall analysis spectrum of the organic optoelectronic component by IR or X-ray radiation, wherein the overall analysis spectrum is composed of a first analysis spectrum of the functional component part and a second analysis spectrum of the camouflage layer, and determination of the first and/or second analysis spectrum from the overall analysis spectrum is made more difficult or prevented so that, due to the camouflage layer, determination of the material composition of the functional component part is made difficult or prevented.
Abstract:
An organic optoelectronic component includes an organic functional layer stack between a first electrode and a second electrode including a light-emitting layer formed to emit a radiation during operation of the component, and a coupling-out layer arranged above the first electrode and/or the second electrode which is in a beam path of the radiation of the light-emitting layer, wherein the coupling-out layer includes a structured layer and a planarization layer arranged thereabove and the structured layer has a structured surface structured at least in places, the planarization layer planarizes the structured surface of the structured layer, and a difference in the refractive indices of the structured layer and the planarization layer is smaller than 0.3 at least in places.
Abstract:
An optoelectronic device is disclosed. In an embodiment the optoelectronic device includes a light-transmissive first electrode, an electrically conductive track including a metal, and a functional organic region having at least one active region, wherein the electrically conductive track is arranged between the first electrode and the functional organic region and wherein the electrically conductive track is in direct contact with the first electrode and the functional organic region.
Abstract:
An optoelectronic device includes a covering layer, a first electrode, a functional layer stack arranged between the covering layer and the first electrode and a plurality of spacers, wherein the functional layer stack has an organic active layer that generates electromagnetic radiation; the first electrode has conductor tracks with branching points, the spacers are each arranged on one of the branching points, and the functional layer stack is arranged in places between the covering layer and the spacers.
Abstract:
A method of preventing an analysis of the material composition of an organic optoelectronic component includes: A) providing an organic optoelectronic component having a functional component part and a camouflage layer, and B) determining an overall analysis spectrum of the organic optoelectronic component by IR or X-ray radiation, wherein the overall analysis spectrum is composed of a first analysis spectrum of the functional component part and a second analysis spectrum of the camouflage layer, and determination of the first and/or second analysis spectrum from the overall analysis spectrum is made more difficult or prevented so that, due to the camouflage layer, determination of the material composition of the functional component part is made difficult or prevented.
Abstract:
A light-emitting device includes a carrier, an organic layer sequence arranged on the carrier and having at least one emitter layer containing a light-emitting material configured to emit light of a first wavelength range, a first electrode and a second electrode, and a multiplicity of nanostructures, wherein the nanostructures have a refractive index smaller than a refractive index of the light-emitting material of the emitter layer and at least some of the nanostructures project into the emitter layer or pierce through the emitter layer.