Abstract:
The present invention aims to provide a plasma display panel that can be driven at low voltage and can offer favorable image display performance. In order to achieve the aim, on a surface of the front panel 1 on which the display electrode 5 is formed, the protective layer 7 made by using a crystalline oxide material that contains a crystalline oxide selected from the group consisting of (i) at least one of SrCeO3 and BaCeO3 and (ii) a solid solution of SrCeO3 and BaCeO3 is disposed so as to face the discharge space 14. By using the crystalline oxide material that contains the crystalline oxide selected from the group consisting of (i) at least one of SrCeO3 and BaCeO3 and (ii) a solid solution of SrCeO3 and BaCeO3, chemical stability can be improved without reducing secondary electron emission efficiency. A PDP capable of lowering drive voltage compared with a case where MgO is used can be obtained by using the crystalline oxide material.
Abstract:
A plasma display panel of the present invention includes display electrodes and address electrodes that cross each other. The electrode to be covered with the first dielectric layer contains at least one selected from silver and copper. The first glass contains Bi2O3. The first glass further contains 0 to 4 wt % of MoO3 and 0 to 4 wt % of WO3, and the total of the contents of MoO3 and WO3 that are contained in the first glass is in a range of 0.1 to 8 wt %. The first glass may contain, as components thereof: 0 to 15 wt % SiO2; 10 to 50 wt % B2O3; 15 to 50 wt % ZnO; 0 to 10 wt % Al2O3; 2 to 40 wt % Bi2O3; 0 to 5 wt % MgO; 5 to 38 wt % CaO+SrO+BaO; 0 to 4 wt % MoO3; and 0 to 4 wt % WO3, and the total of the contents of MoO3 and WO3 that are contained in the first glass is in the range of 0.1 to 8 wt %.
Abstract:
A glass composition of the present invention is an oxide glass, in which the percentages of elements except for oxygen (O) contained therein are as follows, in terms of atom %: the amount of boron (B) exceeds 72% but does not exceed 86%, the total amount of lithium (Li), sodium (Na), and potassium (K) is 8% to 20%, the total amount of magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) is 1% to 8%, the amount of silicon (Si) is from 0% to less than 15%, and the amount of zinc (Zn) is from 0% to less than 2%. This glass composition further may contain molybdenum (Mo) and/or tungsten (W) in the range of more than 0% but not more than 3%.
Abstract:
A plasma display panel of the present invention includes a display electrode (5) and an address electrode (10) that cross each other. At least one selected from the display electrode (5) and the address electrode (10) is covered with a first dielectric layer (6) containing first glass. The first glass contains Bi2O3, and the electrode that is covered with the first dielectric layer (6) contains at least one selected from the group consisting of silver and copper. The first glass further contains 0 to 4 wt % of MoO3 and 0 to 4 wt % of WO3, and the total of the contents of MoO3 and WO3 in the first glass is in a range of 0.1 to 8 wt %.
Abstract:
A glass composition for covering electrodes of the present invention contains: 0 to 15 wt % SiO2; 10 to 50 wt % B2O3; 15 to 50 wt % ZnO; 0 to 10 wt % Al2O3; 2 to 40 wt % Bi2O3; 0 to 5 wt % MgO; 5 to 38 wt % CaO+SrO+BaO; 0 to 0.1 wt % Li2O+Na2O+K2O; 0 to 4 wt % MoO3; and 0 to 4 wt % WO3, and the total of the contents of MoO3 and WO3 is in the range of 0.1 to 8 wt %. The glass composition for covering electrodes of the present invention may contain: 0 to 2 wt % SiO2; 10 to 50 wt % B2O3; 15 to 50 wt % ZnO; 0 to 10 wt % Al2O3; 2 to 40 wt % Bi2O3; 0 to 5 wt % MgO; 5 to 38 wt % CaO+SrO+BaO; 0 to 4 wt % MoO3; and 0 to 4 wt % WO3, and the total of the contents of MoO3 and WO3 may be in the range of 0.1 to 8 wt %.
Abstract translation:本发明的覆盖电极用玻璃组合物含有:0〜15重量%的SiO 2; 10至50重量%B 2 O 3 3; 15〜50wt%的ZnO; 0至10重量%的Al 2 O 3 3; 2至40重量%的Bi 2 O 3 3; 0〜5重量%的MgO; 5〜38重量%CaO + SrO + BaO; 0〜0.1重量%Li 2 O + Na 2 O + K 2 O; 0至4wt%MoO 3 3; 和0至4重量%的WO 3,MoO 3 3和WO 3 3的含量的总和在0.1至8的范围内 重量%。 本发明的覆盖电极用玻璃组合物可以含有0〜2重量%的SiO 2, 10至50重量%B 2 O 3 3; 15〜50wt%的ZnO; 0至10重量%的Al 2 O 3 3; 2至40重量%的Bi 2 O 3 3; 0〜5重量%的MgO; 5〜38重量%CaO + SrO + BaO; 0至4wt%MoO 3 3; 和0〜4重量%的WO 3,MoO 3 3和WO 3的含量的总和可以在0.1〜 8重量%。
Abstract:
A plasma display panel of the present invention includes display electrodes and address electrodes that cross each other. The electrode to be covered with the first dielectric layer contains at least one selected from silver and copper. The first glass contains Bi2O3. The first glass further contains 0 to 4 wt % of MoO3 and 0 to 4 wt % of WO3, and the total of the contents of MoO3 and WO3 that are contained in the first glass is in a range of 0.1 to 8 wt %. The first glass may contain, as components thereof: 0 to 15 wt % SiO2; 10 to 50 wt % B2O3; 15 to 50 wt % ZnO; 0 to 10 wt % Al2O3; 2 to 40 wt % Bi2O3; 0 to 5 wt % MgO; 5 to 38 wt % CaO+SrO+BaO; 0 to 4 wt % MoO3; and 0 to 4 wt % WO3, and the total of the contents of MoO3 and WO3 that are contained in the first glass is in the range of 0.1 to 8 wt %.
Abstract:
On the occasion of the aligning process to transfer a predetermined pattern to a semiconductor wafer by irradiating a photoresist on the semiconductor wafer with an aligning laser beam of the modified lighting via a photomask MK, the photomask MK allocating, to provide periodicity, the main apertures to transfer the predetermined pattern as the apertures formed by removing a part of the half-tone film on the mask substrate and the auxiliary apertures not resolved on the semiconductor wafer as the apertures formed by removing a part of the half-tone film is used to improve the resolution of the pattern.
Abstract:
An air filter medium is provided with a porous film made from a polytetafluoroethylene, and a non-woven fabric laminated on at least one side of the porous film. The non-woven fabric has an apparent density satisfying the following equation: apparent density (g/cm3)
Abstract translation:空气过滤介质设置有由多三氟乙烯制成的多孔膜和层叠在多孔膜的至少一侧上的无纺布。 无纺布的表观密度满足下列等式:表观密度(g / cm 3)<1.5×(基重(g / m 2)/ 1000)+0.11。 过滤介质是通过包括由聚四氟乙烯形成的多孔膜制造的第一工序的工序制造的,第二工序是将多孔膜的至少一侧的多孔膜的至少一面层压到经过 非粘合剂处理。 过滤介质用于制造空气过滤器组件,而空气过滤器组件用于制造空气过滤器单元。
Abstract:
A magnetic element including: a composite magnetic member A containing a metallic magnetic powder in an amount of 50-70 vol. % and a thermosetting resin in an amount of 50-30 vol. %; a magnetic member B that is at least one selected from a ferrite sintered body and a pressed-powder magnetic body of a metallic magnetic powder; and a coil. The magnetic element is characterized in that a magnetic path determined by an arrangement of the coil passes the magnetic member A and the magnetic member B in series and the coil is embedded in the magnetic member A. The present invention also provides a method for manufacturing the magnetic element.
Abstract:
An additional MOS transistor receiving at its control electrode a signal complementary to that applied to control electrodes of MOS transistors is provided between a power supply node and a control electrode line formed by resistors having a significant resistance and interconnecting respective control electrodes of MOS transistors which are connected in parallel and each of which is connected between output signal line and power supply node. When MOS transistors are rendered non-conductive, the additional MOS transistor is rendered conductive. As a result, internal nodes are driven by an inverter and the additional MOS transistor to a power supply voltage, thereby turning off MOS transistors at the same timing. Consequently, through current in a semiconductor output circuit can be suppressed and an output signal has no ringing.