摘要:
A thermal interface material (40) includes a silver colloid base (32), and an array of carbon nanotubes (22) disposed in the silver colloid base uniformly. The silver colloid base includes silver particles, boron nitride particles and polysynthetic oils. The silver colloid base has a first surface (42), and a second surface (44) opposite to the first surface. The carbon nanotubes are substantially parallel to each other, and extend from the first surface to the second surface. A method for manufacturing the thermal interface material includes the steps of: (a) forming an array of carbon nanotubes on a substrate; (b) immersing the carbon nanotubes in a silver colloid base; (c) solidifying the silver colloid base; and (d) peeling the solidified silver colloid base with the carbon nanotubes secured therein off from the substrate.
摘要:
A light-emitting diode (LED) (10) includes a chip body (103), an encapsulation can (105) surrounding the chip body, and a base (106) supporting the encapsulation can and the chip body thereon. Numerous diffusion structures (1050) are provided on the encapsulation can, and the encapsulation can is made of a piezoelectric material for widening radiation angles of light beams emitted from the chip body. With the diffusion structures and the piezoelectric encapsulation can, light beams from the chip body are diffused and attain wider radiation angles. A backlight system (900) includes a light guide plate (20), and a number of the above-described LEDs disposed adjacent to the light guide plate. Light beams having wide radiation angles are emitted from the LEDs and enter the light guide plate. This enables a light emitting surface of the light guide plate to have highly uniform brightness.
摘要:
A planar light source device (100) for a display device includes a light guide plate (120) and pluralities of light emitting diodes (110). The light guide plate has a light incident surface (121). The light emitting diodes are located in the vicinity of the light incident surface. Each light emitting diode has a light emission surface opposite to the light incident surface of the light guide plate, and has a diffraction grating (117) provided on the light emission surface for improving a range of divergence of light beams emitted therefrom.
摘要:
A heat dissipating circulatory system (8) includes a pool (7) for receiving an operating fluid, a pump (3), a heat spreader (2) and a condenser (4). A first pipe (51) interconnects an output end (42) of the condenser and an input end (71) of the pool. A second pipe (52) interconnects an output end (72) of the pool and an input end (31) of the pump. A third pipe (53) interconnects an output end (32) of the pump and an input end (21) of the heat spreader. A fourth pipe (54) interconnects an output end (22) of the heat spreader and an input end (41) of the condenser. The heat spreader includes a fin (13) and a liquid sputtering assembly (1). The liquid sputtering assembly includes a plurality of nozzles (11) and drivers (12). The operating fluid is directly sputtered onto the fin, thereby providing direct heat exchange.
摘要:
The present invention relates to a reflective plate (23) and a backlight system (2) using the same. The reflective plate includes a substrate (232) and a reflective film (233). The reflective plate has a plurality of dots (231) formed thereon to diffuse light beams impinging thereon.
摘要:
Reproducible texturing of magnetic recording media is enhanced by sputtering a buffer layer, such as Ni—P, on a nonmagnetic substrate, prior to sputtering a textured bump layer. A magnetic recording medium comprising a sputter textured metal layer and high coercivity is achieved by employing an underlayer, such as NiAl or FeAl, preferably a composite underlayer containing a chromium or chromium-alloy layer and a NiAl layer, on the sputter textured layer. Advantageously, the buffer layer, underlayer, textured bump layer, magnetic layer and carbon overcoat can be sputter deposited in a single apparatus.
摘要:
A high areal density magnetic recording medium exhibiting high remanent coercivity and high coercivity squareness is formed with a thin CoCrTa intermediate layer to provide appropriate crystalline orientation and surface morphology for nucleation and growth of a magnetic layer thereon. The present invention also enables the use of lower substrate heating temperatures during deposition. Embodiments include depositing an intermediate Co alloy layer comprising about 10 up to about 15 atomic % Cr and about 1 to about 6 atomic % Ta at a thickness of about 1.5 to about 150 .ANG..