摘要:
Methods and apparatus supporting efficient paging in a wireless communications system supporting both access node based communications and peer to peer communications are described. Paging timing intervals are set aside in the timing structure such that multi-mode wireless terminals can monitor, e.g., in an infrastructure band, for pages from a base station whether the wireless terminal is operating in a base station attachment point mode or is operating in a peer to peer communications mode. Wireless terminals operating in a peer to peer mode, e.g., using a non-infrastructure band, suspends peer to peer communications during the paging intervals. The time periods, in which the wireless terminal checks pages are, in some embodiments, predetermined, so that both the wireless terminal and base station are synchronized on when a page should be delivered. This synchronization helps reduce the wastage of session time in the peer to peer sessions.
摘要:
Methods and apparatus for implementing and/or using amplifiers and performing various amplification related operations are described. The methods are well suited for use with, but not limited to, switching type amplifiers. The methods and apparatus described herein allow for the use of switching amplifiers while reducing and/or compensating for distortions that the use of such amplifiers would normally create. The described methods and apparatus can be used alone or in combination with various novel signaling schemes which can make it easier to compensate for the non-ideal behavior of switching amplifiers in such a way as to enable practical application in wireless transmission and/or other applications.
摘要:
A composite signal includes a high power beacon signal and low power corresponding wideband synchronization signal and is communicated over a time interval exceeding a single OFDM transmission time interval. A base station transmits one or more different such composite broadcast signals in a recurring timing structure. Each different potential beacon signal, e.g., a single tone signal, is paired with a unique wideband synchronization signal. A wideband synchronization signal includes at least some predetermined null tones and at least some predetermined non-null tones. For a given wideband synchronization signal, the predetermined null tones carry predetermined modulation symbol values, A wireless terminal receives a composite signal, identifies a beacon, determines a corresponding known wideband synchronization signal, compares received to known wideband synchronization signals, and determines at least one of a timing adjustment, frequency adjustment and channel estimation.
摘要:
Wireless devices, e.g., in a cognitive radio network, discover and use locally available usable spectrum for communication. Beacon signaling facilitates available spectrum discovery, spectrum usage coordination, and device identification. A wireless terminal, which may have entered a new area and powered up, monitors to detect for the presence of beacon signals in a communications band. When the wireless terminal fails to detect a beacon, the wireless terminal assumes that the spectrum is available and transmits its user beacon signal thereby providing notification of its presence in the area to other wireless terminals. The wireless terminal maintains a coordinated timing relationship between its beacon transmit interval and beacon detect interval, which are performed on an ongoing basis. The combination of beacon TX interval and beacon monitoring interval represents a small fraction of total time, allowing for power conservation. The coordinated timing relationship, known to peers, facilitates efficient peer-peer communications session establishment.
摘要:
A base station generates and transmits a multi-symbol beacon/timing synchronization signal. The multi-symbol beacon/timing synchronization signal includes: (i) an initial symbol including a body portion and a cyclic prefix, the cyclic prefix preceding the body portion and being generated from an end portion of the body portion and (ii) an extension symbol, which immediately follows the initial symbol. The extension symbol includes a first copy of the body portion beginning at the start of the extension symbol. The first copy of the body portion is immediately followed by a truncated portion, which is a copy of an initial portion of the body portion. The multi-symbol beacon/timing synchronization signal includes a single high power beacon tone, a plurality of low power tones comprising the synchronization signal, and a plurality of intentional Null tones. Each tone designation remains the same for both the initial symbol and the extension symbol.
摘要:
Methods and apparatus for implementing a multi-carrier communications system are described. Various approaches to a phased system deployment and system configurations resulting from different levels of deployment are described. In addition mobile node and methods of operating mobile nodes in communications systems that may have different levels of deployment in different cells are described.
摘要:
Improved ways of communicating assignment signals using flash signaling are described, e.g., for wireless terminals with low SNR, that are more robust against large variation of channel gains due to e.g., frequency selective fading and fast fading in time. Coding and modulation methods and apparatus that have excellent properties against symbol erasures are described. The use of flash signaling provides an improved assignment channel having strong performance on the fading channel without compromising the performance on the AWGN channel. In one exemplary embodiment, the coding and modulation method can tolerate up to 5 erased symbols out of 8 transmitted symbols. One embodiment reduces or minimizes the sector interference on the flash assignment by improving or maximizing orthogonality between different sectors. In addition, one embodiment describes improved ways of swapping flash assignment tone-symbols in the presence other high priority signals, like sector pilots and sector null pilots.
摘要:
Methods and apparatus for improving the utilization of air link resources in a wireless communications system, e.g., an OFDM MIMO system, including a base station with multiple transmit antennas are described. Superposition signaling in the downlink is employed. The superimposed signal includes a first transform result signal and a second lower power signal. The first transform result signal is generated from a first signal, which uses position modulation, e.g., including null components and high power non-null components. Different components of the first transform result signal are directed to different transmit antennas. The first transform result signal communicates information to a first wireless terminal, e.g., a weak receiver. The non-null received elements of the first transform result signal are utilized by a second wireless terminal, e.g., a superior receiver, as pilots to determine a channel estimate. The second wireless terminal uses the determined channel estimate to demodulate received second signals.
摘要:
Special DC tone treatment in a wireless communications system, e.g., an OFDM system, is discussed. In the downlink, a wireless terminal receiver introduces self-interference at the DC tone from the RF/baseband conversion. A base station every so often does not transmit on the downlink DC tone while continuing to transmit on other downlink tones. Wireless terminals measure received signal on the downlink DC tone during the time of suspended DC tone transmission, estimate self-interference and apply a correction to other received downlink DC tones. In the uplink DC tone interference is a composite of the assigned wireless terminal transmitter's baseband/RF conversion self-interference and air link noise. During one symbol interval of an N symbol interval dwell, the uplink DC tone is reserved for a special modulation symbol, which is a predetermined function of the other N-1 modulation symbols. At the base station, its receiver receives a set of modulation symbols conveyed by the uplink DC tone for a dwell, calculates the average DC component and corrects the received N-1 modulation symbols.
摘要:
Special DC tone treatment in a wireless communications system, e.g., an OFDM system, is discussed. In the downlink, a wireless terminal receiver introduces self-interference at the DC tone from the RF/baseband conversion. A base station every so often does not transmit on the downlink DC tone while continuing to transmit on other downlink tones. Wireless terminals measure received signal on the downlink DC tone during the time of suspended DC tone transmission, estimate self-interference and apply a correction to other received downlink DC tones. In the uplink DC tone interference is a composite of the assigned wireless terminal transmitter's baseband/RF conversion self-interference and air link noise. During one symbol interval of an N symbol interval dwell, the uplink DC tone is reserved for a special modulation symbol, which is a predetermined function of the other N−1 modulation symbols. At the base station, its receiver receives a set of modulation symbols conveyed by the uplink DC tone for a dwell, calculates the average DC component and corrects the received N−1 modulation symbols.