摘要:
A method for transmitting a channel quality indicator-only feedback payload is described. A channel quality indicator scheduling message is received from a base station. A channel quality indicator-only feedback payload is generated. The channel quality indicator-only feedback payload is transmitted on a physical uplink shared channel. The method may be performed by a wireless communication device.
摘要:
A method of wireless communication comprises receiving a plurality of codewords and transmitting a downlink feedback message by spatially bundling acknowledgments for the received plurality of codewords. In some designs, an accompanying grant message is transmitted with the downlink feedback message.
摘要:
Transmission management is provided with separate resource partitioning management for control and data transmissions. An evolved node B (eNB) generates separate resource partition schedules for the transmission stream, in which a first schedule is used for data transmissions while a second schedule is used for control signal transmissions. The two separate schemes may have different periodicities or different subframe type assignments that benefit either data or control transmissions or that allow for coordination of both data and control. The eNBs may broadcast the different schedules in regular system information messages, in which the UEs served by these eNBs will configure data and control signal transmissions according to the appropriate resource partition schedules.
摘要:
A precoding scheme to accommodate user equipment (UEs) having higher Doppler speeds. In such transmission schemes, a different precoding matrix is applied to each orthogonal frequency division multiplex (OFDM) symbol in the transmission stream. Additionally, a downlink control message format is defined to handle assignment of multiple different transmission schemes using the same message format. The downlink control message format includes a control element in one of the message fields along with a set of parameters specifically applicable to the assigned transmission scheme. Based on the value of this control element, the UE sets the specific transmission scheme and determines a set of interpretation rules uniquely associated with that transmission scheme. Using the interpretation rules, the UE is able to read the set of parameters as applied to the selected transmission scheme.
摘要:
Certain aspects of the present disclosure propose methods for supporting uplink transmit diversity in a wireless communication system. The proposed methods may eliminate ambiguity in decoding physical downlink control channel aggregation level and resources that are used by different antennas of a user equipment. In addition, a method is proposed for resource allocation for ACK/NACK repetition.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus maintains at least one PHR trigger for triggering communication of a PHR for a plurality of component carriers. In addition, the apparatus communicates the PHR for at least one of the component carriers upon the at least one PHR trigger being triggered. The communicated PHR may be an aggregated PHR that includes power headroom information on the PCC and activated SCCs. The communicated PHR may further include an index associating information in the PHR to a corresponding component carrier. The communicated PHR may further include information indicating use of a PUSCH reference for computing the PHR for the at least one of the component carriers on which there is no PUSCH transmission.
摘要:
Techniques for supporting communication with user equipment (UEs) of different types on a plurality of system bandwidths are described. UEs of each type may operate on one or more available system bandwidths. Resources assigned to a UE may be conveyed by a resource allocation field of a control message sent to the UE. The resource allocation field may have different configurations (e.g., different sizes and/or interpretations) for different system bandwidths. In one design, the resource allocation field and the control message sent to the UE have different sizes for the plurality of system bandwidths. A base station may determine the size of the resource allocation field based on a system bandwidth selected for the UE. In another design, the resource allocation field may have a same size but different interpretations (e.g., different resource mappings) for the plurality of system bandwidths.
摘要:
In a Time Division Duplex (TDD) system, downlink and uplink communications share the same bandwidth but occupy different subframes. When the downlink has more subframes than the uplink, special treatment on user equipment (UE) ACK/NACK feedback is needed. One uplink may need to ACK multiple downlink subframes. A downlink association without unnecessary ACK/NACK resources sets accounts for subframes for which ACK feedback is not desired. Examples of such subframes include: a blank subframe; an almost blank subframe where only a cell specific Reference Signal (RS) is transmitted; a Time Division Multiplex (TDM) partition in which an evolved NodeB (eNB) only transmits a Physical Downlink Shared Channel (PDSCH) or a Physical Downlink Control Channel (PDCCH) indicating Semi-persistent scheduling (SPS) at certain downlink subframes; a Downlink Pilot Timeslot (DwPTS) with a certain special subframe configuration where an eNB does not send the PDSCH and the UE is not in SPS active mode in the DwPTS; and a Multi-Media Broadcast over a Single Frequency Network (MBSFN) subframe when the UE is not in SPS active mode in the MBSFN subframe.
摘要:
Techniques for sending control information relating to multiple downlink carriers and data on a single uplink carrier are described. A user equipment (UE) may be scheduled to transmit on a designated uplink carrier. The UE can multiplex control information for multiple downlink carriers with data for transmission on the uplink carrier in a same subframe. Multiplexing may be performed according to a type of the control information and/or an ordering, priority, or association of the downlink carriers. The UE can selectively encode the control information separately for each downlink carrier and/or jointly across downlink carriers. The control information may be mapped to a single layer or multiple layers of a data channel. The UE may send the multiplexed control information and data on the data channel in the subframe while maintaining a single-carrier waveform.
摘要:
Techniques for reliably transmitting and receiving control information in a wireless network are described. A cell may typically send control information on a control channel and associated data (e.g., system information) on a data channel in the same subframe. This subframe may have strong interference from other cells. For cross-subframe signaling, the cell may transmit the control information in a first subframe and the associated data in a second subframe. The first subframe may be a usable subframe for the cell and may have less interference from other cells. A UE may not know the location of the first subframe and may perform window-based decoding. The UE may decode the control channel in at least one subframe within a decoding window covering the first subframe to obtain the control information. The UE may then decode the data channel in the second subframe based on the control information to obtain the data.