摘要:
In some embodiments, the invention involves a system and method to provide maximal boot-time parallelism for future multi-core, multi-node, and many-core systems. In an embodiment, the security (SEC), pre-EFI initialization (PEI), and then driver execution environment (DXE) phases are executed in parallel on multiple compute nodes (sockets) of a platform. Once the SEC/PEI/DXE phases are executed on all compute nodes having a processor, the boot device select (BDS) phase completes the boot by merging or partitioning the compute nodes based on a platform policy. Partitioned compute nodes each run their own instance of EFI. A common memory map may be generated prior to operating system (OS) launch when compute nodes are to be merged. Other embodiments are described and claimed.
摘要:
A system and method to implement a resilient compute center. A plurality of processing systems is initialized. Each of the processing systems capable of operation communicates status information about its operational health to a management module responsible for managing the processing systems. The management module reinitializing any of the processing systems, if the management module determines that any of the processing systems is operating in a degraded state based on the status information communicated to the management module.
摘要:
A method and apparatus is described herein for fault resilient booting of a platform. Upon booting the platform, any boot routines marked are skipped. A current boot routine to be executed in a boot sequence is registered in nonvolatile memory. An attempt to execute the current boot routine is made. If the attempt is successful, the next boot entry is determined and skipped or executed, based on whether it is marked. However, if the execution fails the current boot routine is marked and, upon subsequent execution of the boot sequence, skipped.
摘要:
Generally, this disclosure provides methods and systems for secure data protection with improved read-only memory locking during system pre-boot including protection of Advanced Configuration and Power Interface (ACPI) tables. The methods may include selecting a region of system memory to be protected, the selection occurring in response to a system reset state and performed by a trusted control block (TCB) comprising a trusted basic input/output system (BIOS); programming an address decoder circuit to configure the selected region as read-write; moving data to be secured to the selected region; programming the address decoder circuit to configure the selected region as read-only; and locking the read-only configuration in the address decoder circuit.
摘要:
In some embodiments, the invention involves a system and method to provide maximal boot-time parallelism for future multi-core, multi-node, and many-core systems. In an embodiment, the security (SEC), pre-EFI initialization (PEI), and then driver execution environment (DXE) phases are executed in parallel on multiple compute nodes (sockets) of a platform. Once the SEC/PEI/DXE phases are executed on all compute nodes having a processor, the boot device select (BDS) phase completes the boot by merging or partitioning the compute nodes based on a platform policy. Partitioned compute nodes each run their own instance of EFI. A common memory map may be generated prior to operating system (OS) launch when compute nodes are to be merged. Other embodiments are described and claimed.
摘要:
Provided are a method, system, and article of manufacture, wherein instructions stored in an option ROM are copied to the system memory of a computer, wherein the option ROM corresponds to a device that is coupled to the computer. A virtual machine is generated, wherein the virtual machine executes the instructions copied to the system memory to boot the device before any operating system is loaded.
摘要:
Provided are a method, system, and article of manufacture, wherein instructions stored in an option ROM are copied to the system memory of a computer, wherein the option ROM corresponds to a device that is coupled to the computer. A virtual machine is generated, wherein the virtual machine executes the instructions copied to the system memory to boot the device before any operating system is loaded.
摘要:
In an embodiment, a power management controller is to receive thread information from a scheduler, where the thread information includes thread priority information for a thread scheduled to a core of a multicore processor. The power management controller is further to receive power consumption information from a power controller and to determine a power management action to be taken by the power controller on at least one core based at least in part on the thread priority information. Other embodiments are described and claimed.
摘要:
An apparatus and method are described for performing partial memory mirroring operations. For example, one embodiment of a processor comprises: a processor core for generating a read or write transaction having a system memory address; a home agent identified to service the read or write transaction based on the system memory address; one or more target address decoders (TADs) associated with the home agent to determine whether the system memory address is within a mirrored memory region or a non-mirrored memory region, wherein: if the system memory address is within a mirrored memory region, then the one or more TADs identifying multiple mirrored memory channels for the read or write transaction; and if the system memory address is not within a mirrored memory region, then the one or more TADs identifying a single memory channel for the read or write transaction.
摘要:
Techniques and mechanisms for providing access to a storage device of a computer platform. In an embodiment, an agent executing on the platform may be registered for access to the storage device, the agent being allocated a memory space by a host operating system of the platform. Registration of the agent may result in a location in the allocated memory space being mapped to a location in the storage device. In another embodiment, the agent may write to the location in the allocated memory space to request access to the storage device, wherein the request is independent of any system call to the host OS which describes the requested access.