摘要:
An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
摘要:
A plasma-based etching process is used to specifically shape the endface of an optical substrate supporting an optical waveguide into a contoured facet which will improve coupling efficiency between the waveguide and a free space optical signal. The ability to use standard photolithographic techniques to pattern and etch the optical endface facet allows for virtually any desired facet geometry to be formed—and replicated across the surface of a wafer for the entire group of assemblies being fabricated. A lens may be etched into the endface using a properly-defined photolithographic mask, with the focal point of the lens selected with respect to the parameters of the optical waveguide and the propagating free space signal. Alternatively, an angled facet may be formed along the endface, with the angle sufficient to re-direct reflected/scattered signals away from the optical axis.
摘要:
A plasma-based etching process is used to specifically shape the endface of an optical substrate supporting an optical waveguide into a contoured facet which will improve coupling efficiency between the waveguide and a free space optical signal. The ability to use standard photolithographic techniques to pattern and etch the optical endface facet allows for virtually any desired facet geometry to be formed—and replicated across the surface of a wafer for the entire group of assemblies being fabricated. A lens may be etched into the endface using a properly-defined photolithographic mask, with the focal point of the lens selected with respect to the parameters of the optical waveguide and the propagating free space signal. Alternatively, an angled facet may be formed along the endface, with the angle sufficient to re-direct reflected/scattered signals away from the optical axis.
摘要:
A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which hen transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index.
摘要:
One or more nanotaper coupling waveguides formed within an optical substrate allows for straightforward, reproducible offset launch conditions to be achieved between an incoming signal and the core region of a multimode fiber (which may be disposed along an alignment fixture formed in the optical substrate), fiber array or other multimode waveguiding structure. Offset launching of a single mode signal into a multimode fiber couples the signal into favorable spatial modes which reduce the presence of differential mode dispersion along the fiber. This approach to providing single mode signal coupling into legacy multimode fiber is considered to be an improvement over the prior art which required the use of an interface element between a single mode fiber and multimode fiber, limiting the number of propagating signals and applications for the legacy multimode fiber. An optical switch may be used to select the specific nanotaper(s) for coupling into the multimode fiber.
摘要:
A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which then transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index
摘要:
An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
摘要:
A planar, waveguide-based silicon Schottky barrier photodetector includes a third terminal in the form of a field plate to improve the responsivity of the detector. Preferably, a silicide used for the detection region is formed during a processing step where other silicide contact regions are being formed. The field plate is preferably formed as part of the first or second layer of CMOS metallization and is controlled by an applied voltage to modify the electric field in the vicinity of the detector's silicide layer. By modifying the electric field, the responsivity of the device is “tuned” so as to adjust the momentum of “hot” carriers (electrons or holes, depending on the conductivity of the silicon) with respect to the Schottky barrier of the device. The applied potential functions to align with the direction of momentum of the “hot” carriers in the preferred direction “normal” to the silicon-silicide interface, allowing for an increased number to move over the Schottky barrier and add to the generated photocurrent.
摘要:
A high speed silicon-based optical modulator with control of the dopant profiles in the body and gate regions of the device reduces the series resistance of the structure without incurring substantial optical power loss. That is, the use of increased dopant values in areas beyond the active region will allow for the series resistance to be reduced (and thus increase the modulating speed of the device) without incurring too large a penalty in signal loss. The dopant profiles within the gate and body regions are tailored to exhibit an intermediate value between the high dopant concentration in the contact areas and the low dopant concentration in the carrier integration window area.
摘要:
The surface silicon layer (SOI layer) of an SOI-based optical modulator is processed to exhibit a corrugated surface along the direction of optical signal propagation. The required dielectric layer (i.e., relatively thin “gate oxide”) is formed over the corrugated structure in a manner that preserves the corrugated topology. A second silicon layer, required to form the modulator structure, is then formed over the gate oxide in a manner that follows the corrugated topology, where the overlapping portion of the corrugated SOI layer, gate oxide and second silicon layer defines the active region of the modulator. The utilization of the corrugated active region increases the area over which optical field intensity will overlap with the free carrier modulation region, improving the modulator's efficiency.