摘要:
A method and apparatus for encoding an image by freely combining a plurality of prediction schemes and a plurality of orthogonal transform schemes based on grouping and matching of the plurality of prediction schemes and the plurality of orthogonal transform schemes is provided.
摘要:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
摘要:
A method and apparatus for enhancing the performance of residual prediction in a multi-layered video codec are provided. A residual prediction method includes calculating a first residual signal for a current layer block; calculating a second residual signal for a lower layer block corresponding to the current layer block; performing scaling by multiplying the second residual signal by a scaling factor; and calculating a difference between the first residual signal and the scaled second residual signal.
摘要:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
摘要:
Provided are an image encoding method and apparatus for encoding image data, in which compression efficiency is further improved by filtering motion-compensated image data, thereby reducing errors with respect to original image data, and an image decoding method and apparatus for decoding encoded image data. A filter is generated using previously decoded surrounding pixels of a current frame and surrounding pixels of a reference frame, and prediction data is then filtered using the generated filter. Therefore, it is possible to decrease a size of residual data to be encoded.
摘要:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
摘要:
Provided are a method and apparatus for increasing the compression efficiency of a motion vector by efficiently predicting a motion vector of a frame that is located in a current temporal level of multiple temporal levels using a motion vector of a frame that is located in a next temporal level. The method includes selecting a second frame that exists in a low temporal level of a first frame and is nearest to the first frame, where the first frame exists in a current temporal level of the multiple temporal levels; generating a prediction motion vector for the first frame from a motion vector of the second frame; and subtracting the generated prediction motion vector from the motion vector of the first frame.