摘要:
Methods are disclosed for forming ultra shallow junctions in semiconductor substrates using multiple ion implantation steps. The ion implantation steps include implantation of at least one electronically-active dopant as well as the implantation of at least two species effective at limiting junction broadening by channeling during dopant implantation and/or by thermal diffusion. Following dopant implantation, the electronically-active dopant is activated by thermal processing.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
摘要:
The present invention provides a method for manufacturing a transistor device, and a method for manufacturing an integrated circuit including the same. The method for manufacturing the transistor device, among other elements, includes forming a gate structure over a substrate, implanting an atom selected from the group consisting of fluorine, silicon, or germanium into the substrate proximate the gate structure to cause at least a portion of the substrate to be in a sub-amorphous state, and implanting a dopant into the substrate having the implanted atom therein, thereby forming source/drain regions in the substrate, wherein the transistor device does not have a halo/pocket implant.
摘要:
Formation of an NMOS transistor is disclosed, where at least one of carbon, atomic fluorine and molecular fluorine (F2) are combined with implantations of at least one of arsenic, phosphorous and antimony. The dopant combinations can be used in LDD implantations to form source/drain extension regions, as well as in implantations to form halo regions and/or source/drain regions. The combinations of dopants help to reduce sheet resistance and increase carrier mobility, which in turn facilitates device scaling and desired device performance.
摘要翻译:公开了一种NMOS晶体管的形成,其中碳,原子氟和分子氟(F 2 O 2)中的至少一种与砷,磷和锑中的至少一种的注入相结合。 掺杂剂组合可用于LDD注入以形成源极/漏极延伸区域,以及用于形成卤素区域和/或源极/漏极区域的注入。 掺杂剂的组合有助于降低薄层电阻并增加载流子迁移率,这进而有助于器件缩放和期望的器件性能。
摘要:
The invention provides a semiconductor device, a method of manufacture therefore and a method for manufacturing an integrated circuit including the same. The semiconductor device, among other elements, may include a gate structure located over a substrate, the gate structure including a gate dielectric layer and gate electrode layer. The semiconductor device may further include source/drain regions located in/over the substrate and adjacent the gate structure, and a nickel alloy silicide located in the source/drain regions, the nickel alloy silicide having an amount of indium located therein.
摘要:
In one aspect, the present invention provides a method of forming junctions in a silicon-germanium layer (20). In this particular embodiment, the method comprises implanting a dopant (80) into the silicon-germanium layer (20) and implanting fluorine (70) into the silicon-germanium layer (20).
摘要:
Methods (70) are described for fabricating shallow and abrupt gradient drain extensions for MOS type transistors, in which a solid phase epitaxial recrystallization is performed within the drain extensions utilizing a laser SPER annealing process in the manufacture of semiconductor products. One method (70) includes a preamorphizing process (74) of implanting a heavy ion species such as Germanium deep into an extension region of a substrate adjacent a channel region of the substrate to form a deep amorphized region, then implanting boron or another such dopant species into an extension region of the substrate adjacent the channel region. The implanted dopant is then preannealed (78) at a low temperature to set the junction depth and doping concentration. The extensions and/or the deep source/drain regions are subsequently annealed (84) with a laser at a high temperature providing a solid phase epitaxial recrystallization in the regions proximate the channel region to achieve ultra high doping concentrations and activation levels with an abrupt gradient.
摘要:
The present invention provides a method for manufacturing a semiconductor device and a method for manufacturing an integrated circuit. The method for manufacturing the semiconductor device, among other steps, includes forming a capping layer (210) over a transistor device having source/drain regions (150, 155) located over a substrate (110), the capping layer (210) having a degree of reflectivity, and annealing the transistor device through the capping layer (210) using photons (310), the annealing of the transistor device affected by the degree of reflectivity.
摘要:
The invention describes a method for forming ultra shallow junction formation. Dopant species are implanted into a semiconductor. Solid phase epitaxy anneals and subsequent ultra high temperature anneals are performed following the implantation processes.
摘要:
A method (40) of forming an integrated circuit (60) device including a substrate (64). The method including the step of first (42), forming a gate stack (62) in a fixed relationship to the substrate, the gate stack including a gate having sidewalls. The method further includes the step of second (42), implanting source/drain extensions (701, 702) into the substrate and self-aligned relative to the gate stack. The method further includes the steps of third (46, 48), forming a first sidewall-forming layer (72) in a fixed relationship to the sidewalls and forming a second sidewall-forming layer (74) in a fixed relationship to the sidewalls. The step of forming a second sidewall-forming layer includes depositing the second sidewall-forming layer at a temperature equal to or greater than approximately 850° C. The method further includes the step of fourth (50), implanting deep source/drain regions (761, 762) into the substrate and self-aligned relative to the gate stack and the first and second sidewall-forming layers.