摘要:
The invention describes a method for forming ultra shallow junction formation. Dopant species are implanted into a semiconductor. Solid phase epitaxy anneals and subsequent ultra high temperature anneals are performed following the implantation processes.
摘要:
A process for forming diffused region less than 20 nanometers deep with an average doping dose above 1014 cm−2 in an IC substrate, particularly LDD region in an MOS transistor, is disclosed. Dopants are implanted into a source dielectric layer using gas cluster ion beam (GCIB) implantation, molecular ion implantation or atomic ion implantation resulting in negligible damage in the IC substrate. A spike anneal or a laser anneal diffuses the implanted dopants into the IC substrate. The inventive process may also be applied to forming source and drain (S/D) regions. One source dielectric layer may be used for forming both NLDD and PLDD regions.
摘要:
A method for reducing curvature of a wafer having a semiconductor surface. One or more process steps are identified at which wafers exhibit the largest curvature, and/or wafer curvature that may reduce die yield. A crystal damaging process converts at least a portion of the semiconductor surface into at least one amorphous surface region After or contemporaneously with the crystal damaging, the amorphous surface region is recrystallized by recrystallization annealing that anneals the wafer for a time ≦5 seconds at a temperature sufficient for recrystallization of the amorphous surface region. A subsequent photolithography step is facilitated due to the reduction in average wafer curvature provided by the recrystallization.
摘要:
The present invention provides, for use in a semiconductor manufacturing process, a method (100) of preparing an ion-implantation source material. The method includes providing (110) a deliquescent ion implantation source material and mixing (110) the deliquescent ion implantation source material with an organic liquid to form a paste.
摘要:
Ultra high temperature (UHT) anneals above 1200 C for less than 100 milliseconds for PMOS transistors reduce end of range dislocations, but are incompatible with stress memorization technique (SMT) layers used to enhance NMOS on-state current. This invention reverses the conventional order of forming the NMOS first by forming PSD using carbon co-implants and UHT annealing them before implanting the NSD and depositing the SMT layer. End of range dislocation densities in the PSD space charge region below 100 cm−2 are achieved. Tensile stress in the PMOS from the SMT layer is significantly reduced. The PLDD may also be UHT annealed to reduce end of range dislocations close to the PMOS channel.
摘要:
In one aspect there is provided a method of manufacturing a semiconductor device comprising forming gate electrodes over a semiconductor substrate, forming source/drains adjacent the gate electrodes, depositing a stress inducing layer over the gate electrodes. A laser anneal is conducted on at least the gate electrodes subsequent to depositing the stress inducing layer at a temperature of at least about 1100° C. for a period of time of at least about 300 microseconds, and the semiconductor device is subjected to a thermal anneal subsequent to conducting the laser anneal.
摘要:
Exemplary embodiments provide methods for reducing and/or removing slip and plastic deformations in semiconductor materials by use of one or more ultra-fast thermal spike anneals. The ultra-fast thermal spike anneal can be an ultra-high temperature (UHT) anneal having an ultra-short annealing time. During the ultra-fast thermal spike anneal, an increased annealing power density can be used to achieve a desired annealing temperature required by manufacturing processes. In an exemplary embodiment, the annealing temperature can be in the range of about 1150° C. to about 1390° C. and the annealing dwell time can be on the order of less than about 0.8 milliseconds. In various embodiments, the disclosed spike-annealing processes can be used to fabrication structures and regions of MOS transistor devices, for example, drain and source extension regions and/or drain and source regions.
摘要:
An embodiment of the invention is a method of making a semiconductor structure 10 where the spacer oxide layer 90 is formed by a hydrogen free precursor CVD process. Another embodiment of the invention is a semiconductor structure 10 having a spacer oxide layer 90 with a hydrogen content of less than 1%.
摘要:
A method for making a transistor within a semiconductor wafer. The method may include etching a recess at source/drain extension locations 90 and depositing SiGe within the recess to form SiGe source/drain extensions 90. Dopants are implanted into the SiGe source/drain extensions 90 and the semiconductor wafer 10 is annealed. Also, a transistor source/drain region 80, 90 having a SiGe source/drain extension 90 that contains evenly distributed dopants, is highly doped, and has highly abrupt edges.
摘要:
The present invention teaches the formation of CMOS transistors using interfacial nitrogen at the interface between the lightly doped extension regions and an overlying insulating layer in combination with a capping layer of silicon nitride, both prior to the final source/drain anneal. Doses and energies may be increased for the P-channel lightly-doped drain, source and drain regions. The resulting transistors exhibit desirably high drive current and low off-state leakage current and overlap capacitance.