摘要:
An electromagnetic resonance device includes an input reflector, an output reflector, and a negative index material (NIM) disposed between the input reflector and the output reflector. The input reflector and output reflector are configured to be reflective to radiation having a wavelength of interest. The NIM is configured to have a negative refraction at the wavelength of interest. A first radiation is reflected by the input reflector toward the first surface of the NIM, passes through the NIM, and is focused on the output reflector as a second radiation. The second radiation is reflected by the output reflector toward the second surface of the NIM, passes through the NIM, and is focused on the input reflector as the first radiation. A gain medium may be included to amplify the first radiation and the second radiation to generate a laser radiation.
摘要:
A NERS-active structure includes a deformable, active nanoparticle support structure for supporting a first nanoparticle and a second nanoparticle that is disposed proximate the first nanoparticle. The nanoparticles each comprise a NERS-active material. The deformable, active nanoparticle support structure is configured to vary the distance between the first nanoparticle and the second nanoparticle while performing NERS. Various active nanoparticle support structures are disclosed. A NERS system includes such a NERS-active structure, a radiation source for generating radiation scatterable by an analyte located proximate the NERS-active structure, and a radiation detector for detecting Raman scattered radiation scattered by the analyte. A method for performing NERS includes providing such a NERS-active structure, providing an analyte at a location proximate the NERS-active structure, irradiating the NERS-active structure and the analyte with radiation, varying the distance between the nanoparticles, and detecting Raman scattered radiation scattered by the analyte.
摘要:
Structures for amplifying light include a resonant cavity in which an analyte may be positioned. The structures for amplifying light may be used to amplify the incident light employed in surface enhanced Raman spectroscopy (SERS). SERS systems employing the structures for amplifying light of the present invention and methods of performing SERS are also disclosed.
摘要:
A nano-colonnade structure-and methods of fabrication and interconnection thereof utilize a nanowire column grown nearly vertically from a (111) horizontal surface of a semiconductor layer to another horizontal surface of another layer to connect the layers. The nano-colonnade structure includes a first layer having the (111) horizontal surface; a second layer having the other horizontal surface; an insulator support between the first layer and the second layer that separates the first layer from the second layer. A portion of the second layer overhangs the insulator support, such that the horizontal surface of the overhanging portion is spaced from and faces the (111) horizontal surface of the first layer. The structure further includes a nanowire column extending nearly vertically from the (111) horizontal surface to the facing horizontal surface, such that the nanowire column connects the first layer to the second layer.
摘要:
A SERS-active structure is disclosed that includes a substrate and at least two nanowires disposed on the substrate. Each of the at least two nanowires has a first end and a second end, the first end being attached to the substrate and the second end having a SERS-active tip. A SERS system is also disclosed that includes a SERS-active structure. Also disclosed are methods for forming a SERS-active structure and methods for performing SERS with SERS-active structures.
摘要:
A system for performing nanostructure-enhanced Raman spectroscopy (NERS) includes a radiation source, a radiation detector configured to detect Raman scattered radiation scattered by an analyte, and a container configured to provide a sealed enclosure. The NERS system further includes a turbulence generating device configured to generate random dynamic motion of a plurality of nanoparticles within the container. A method for performing NERS includes providing a container configured to provide a sealed enclosure, providing a plurality of nanoparticles each comprising a NERS-active material and an analyte within the container, causing random dynamic motion of the plurality of nanoparticles and the analyte, irradiating the plurality of nanoparticles and the analyte with radiation, and detecting Raman scattered radiation scattered by the analyte.
摘要:
A composite material and related methods are described, the composite material being configured to exhibit a negative effective permittivity and/or a negative effective permeability for incident radiation at an operating wavelength, the composite material comprising an arrangement of electromagnetically reactive cells of small dimension relative to the operating wavelength. Each cell includes an externally powered gain element for enhancing a resonant response of that cell to the incident radiation at the operating wavelength.
摘要:
An electromagnetic resonance device includes an input reflector, an output reflector, and a periodic dielectric medium (PDM) disposed between the input reflector and the output reflector. The input reflector and output reflector are configured to be reflective to radiation having a wavelength of interest. The PDM includes a periodic structure having a dielectric periodicity between a first surface and a second surface. The dielectric periodicity is configured with a negative refraction for the wavelength of interest. A first radiation is reflected by the input reflector toward the first surface of the PDM, passes through the PDM, and is focused on the output reflector as a second radiation. The second radiation is reflected by the output reflector toward the second surface of the PDM, passes through the PDM, and is focused on the input reflector as the first radiation.
摘要:
Devices and methods for modifying an electromagnetic beam include a tunable refractive medium, an input waveguide configured for directing an incident radiation to the tunable refractive medium, and at least one output waveguide configured for directing a focused radiation emanating from the tunable refractive medium. The tunable refractive medium comprises first electrodes coupled to a first surface of a periodic dielectric medium, and second electrodes coupled to a second surface of the periodic dielectric medium. The periodic dielectric medium includes a dielectric periodicity configured for providing a negative refraction of the incident radiation and focusing the focused radiation at a focal location. The focal location may be modified by at least one electromagnetic signal applied between the first electrodes and the second electrodes.
摘要:
Devices and methods for detecting the constituent parts of biological polymers are disclosed. A molecular analysis device comprises a molecule sensor and a molecule guide. The molecule sensor comprises a nanowire operably coupling a first terminal and a second terminal and a nitrogenous material disposed on the nanowire. The nitrogenous material is configured to interact with an identifiable configuration of a molecule such that the molecule sensor develops a conductance change responsive to the interaction. The molecule guide is configured for guiding at least a portion of the molecule near the molecule sensor to enable the interaction.