Abstract:
The invention relates to a laser device (100) comprising a substrate (10), on the surface of which an optical waveguide (11) is arranged, which has an optical resonator (12, 13) with such a resonator length that at least one resonator mode forms a stationary wave in the resonator (12, 13), and an amplification medium that is arranged on a surface of the optical waveguide (11), wherein the amplification medium comprises a photonic crystal (20) having a plurality of column- and/or wall-shaped semiconductor elements (21) which are arranged periodically on the surface of the optical waveguide (11) while protruding from the optical waveguide (11), and wherein the photonic crystal (20) is designed to optically interact with the at least one resonator mode of the optical resonator (12, 13) and to amplify light having a wavelength of the at least one resonator mode of the optical resonator (12, 13). The invention also relates to methods for the operation and production of the laser device.
Abstract:
A laser device includes a first waveguiding layer, an active layer, a second waveguiding layer, a contact layer, a first insulating layer, a plurality of hole fillings, a first electrode, and a second electrode. The first waveguiding layer, the active layer, the second waveguiding layer, and the contact layer are stacked in sequence to form an epitaxy structure. The epitaxy structure has a first platform, the first platform has multiple holes to form a photonic crystal structure. The first insulating layer is over an upper surface and a sidewall surface of the first platform, wherein the first insulating layer has a first aperture corresponding to the photonic crystal structure. The hole fillings are respectively filled in the holes. The first electrode is over the photonic crystal structure. The second electrode is electrically connected to the first waveguiding layer.
Abstract:
A laser structure includes a substrate and a first dielectric layer formed on the substrate. A multi-quantum well is formed on the first dielectric layer and has a plurality of alternating layers. The alternating layers include a dielectric layer having a sub-wavelength thickness and a monolayer of a two dimensional material.
Abstract:
A method for tuning the lasing wavelength of a semiconductor nano/microlaser uses mechanical strain to change the bandgap of the semiconductor material and the lasing wavelength. The method enables broad, dynamic, and reversible spectral tuning of single nano/microlasers with subnanometer resolution.
Abstract:
A nanopillar photonic crystal laser includes a plurality of nanopillars and a support structure in contact with at least a portion of each of the nanopillars. Each nanopillar has an axial dimension and two mutually orthogonal cross dimensions. The axial dimension of each of the nanopillars is greater than the two mutually orthogonal cross dimensions, where there mutually orthogonal cross dimensions are less than about 1 μm and greater than about 1 nm. The support structure holds the plurality of nanopillars in preselected relative orientations and displacements relative to each other to form an array pattern that confines light of a preselected wavelength to a resonance region that intercepts at least one nanopillar of the plurality of nanopillars. The at least one nanopillar includes a lasing material to provide an output laser beam of light at the preselected wavelength.
Abstract:
Strain modulated nanostructures for optoelectronic devices and associated systems and methods are disclosed. A semiconductor laser in accordance with one embodiment of the disclosure, for example, comprises an active region having a nanowire structure formed from a semiconductor material. The nanowire structure of the semiconductor material has a bandgap that is indirect in a first strain state. The laser further includes a straining unit coupled to the active region. The straining unit is configured to modulate the nanowire structure such that the nanowire structure reaches a second strain state in which the bandgap becomes direct or substantially direct and, in operation, emits photons upon electron-hole recombination.
Abstract:
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
Abstract:
Provided are a laser diode using zinc oxide nanorods and a manufacturing method thereof. The laser diode using zinc oxide nanorods according to one embodiment of the present disclosure includes: a wafer; an electrode layer formed on the wafer; a nanorod layer including a plurality of n-doped zinc oxide nanorods grown on the electrode layer; and a p-doped single crystal semiconductor layer that is physically in contact with the ends of the zinc oxide nanorods.
Abstract:
Hybrid plasmonic waveguides are described that employ a high-gain semiconductor nanostructure functioning as a gain medium that is separated from a metal substrate surface by a nanoscale thickness thick low-index gap. The waveguides are capable of efficient generation of sub-wavelength high intensity light and have the potential for large modulation bandwidth >1 THz.
Abstract:
An optical emitter includes at least one nanowire connected in a circuit such that current selectively flows into the nanowire. The nanowire has a length-to-diameter ratio of ten or less. A method for generating optical emission includes applying a voltage across a nanowire to inject charge carriers into the nanowire, the nanowire having a length-to-diameter ratio of ten or less; and confining the charge carriers within the nanowire by placing a high bandgap material at each end of the nanowire, wherein the charge carriers recombine to emit optical energy.