Semiconductor structure having metal contact features and method for forming the same

    公开(公告)号:US11469109B2

    公开(公告)日:2022-10-11

    申请号:US16353531

    申请日:2019-03-14

    Abstract: A semiconductor structure having metal contact features and a method for forming the same are provided. The method includes forming a dielectric layer covering an epitaxial structure over a semiconductor substrate and forming an opening in the dielectric layer to expose the epitaxial structure. The method includes forming a metal-containing layer over the dielectric layer and the epitaxial structure. The method includes heating the epitaxial structure and the metal-containing layer to transform a first portion of the metal-containing layer contacting the epitaxial structure into a metal-semiconductor compound layer. The method includes oxidizing the metal-containing layer to transform a second portion of the metal-containing layer over the metal-semiconductor compound layer into a metal oxide layer. The method includes applying a metal chloride-containing etching gas on the metal oxide layer to remove the metal oxide layer and forming a metal contact feature over the metal-semiconductor compound layer.

    Self-aligned metal compound layers for semiconductor devices

    公开(公告)号:US11139397B2

    公开(公告)日:2021-10-05

    申请号:US16572255

    申请日:2019-09-16

    Abstract: The present disclosure relates to methods for forming a semiconductor device. The method includes forming a substrate and forming first and second spacers on the substrate. The method includes depositing first and second self-assembly (SAM) layers respectively on sidewalls of the first and second spacers and depositing a layer stack on the substrate and between and in contact with the first and second SAM layers. Depositing the layer stack includes depositing a ferroelectric layer and removing the first and second SAM layers. The method further includes depositing a metal compound layer on the ferroelectric layer. Portions of the metal compound layer are deposited between the ferroelectric layer and the first or second spacers. The method also includes depositing a gate electrode on the metal compound layer and between the first and second spacers.

    ULTRAVIOLET RADIATION ACTIVATED ATOMIC LAYER DEPOSITION

    公开(公告)号:US20210225644A1

    公开(公告)日:2021-07-22

    申请号:US16745532

    申请日:2020-01-17

    Abstract: The present disclosure relates to a method of fabricating a semiconductor structure, the method includes forming an opening and depositing a metal layer in the opening. The depositing includes performing one or more deposition cycles, wherein each deposition cycle includes flowing a first precursor into a deposition chamber and performing an ultraviolet (UV) radiation process on the first precursor. The method further includes performing a first purging process in the deposition chamber to remove at least a portion of the first precursor, flowing a second precursor into the deposition chamber, and purging the deposition chamber to remove at least a portion of the second precursor.

    Fabrication of field effect transistors with ferroelectric materials

    公开(公告)号:US11031490B2

    公开(公告)日:2021-06-08

    申请号:US16454854

    申请日:2019-06-27

    Abstract: A method of forming a semiconductor device includes forming a sacrificial layer on sidewalls of gate spacers disposed over a semiconductor layer, forming a first hafnium-containing gate dielectric layer over the semiconductor layer in a first trench disposed between the gate spacers, removing the sacrificial layer to form a second trench between the gate spacers and the first hafnium-containing gate dielectric layer, forming a second hafnium-containing gate dielectric layer over the first hafnium-containing gate dielectric layer and on the sidewalls of the gate spacers, annealing the first and the second hafnium-containing gate dielectric layers while simultaneously applying an electric field, and subsequently forming a gate electrode over the annealed first and second hafnium-containing gate dielectric layers.

Patent Agency Ranking