摘要:
There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
摘要:
There is provided a semiconductor device which is formed on a semiconductor substrate and allows effective use of the feature of the semiconductor substrate, and there is also provided a method of manufacturing the same. An N-channel MOS transistor including a P-type body layer (3a), and a P-type active layer (6) for body voltage application which is in contact with the P-type body layer (3a) are formed on an SOI substrate which is formed to align a crystal direction of a support substrate (1) with a crystal direction of an SOI layer (3). A path connecting the P-type body layer (3a) and the P-type active layer (6) for body voltage application is aligned parallel to the crystal direction of the SOI layer (3). Since hole mobility is higher in the crystal direction, parasitic resistance (Ra, Rb) can be reduced in the above path. This speeds up voltage transmission to the P-type body layer (3a) and improves voltage fixing capability in the P-type body layer (3a).
摘要:
A semiconductor device including a gate electrode disposed on a semiconductor substrate and source/drain regions disposed at both sides of the gate electrode, the source/drain regions being formed by implanting impurities. The source/drain regions include an epitaxial layer formed by epitaxially growing a semiconductor material having a different lattice constant from that of the semiconductor substrate in a recessed position at a side of the gate electrode, and a diffusion layer disposed in a surface layer of the semiconductor substrate.
摘要:
A developing device includes: a developer holding member that faces an image carrier on which a latent image is formed and rotating while holding developer; a developing housing with a holding member mount that mounts developer holding member, and accommodates developer; a developer container connected to the developing housing and containing developer that flows into the developing housing; a partition member disposed in the developer container and partitioning an inner space of the developer container; and a loosening member having a loosening portion disposed in the developer container and extending along one side surface and another side surface of the partition member to partition the developer container, and a drawing portion that is connected to the loosening portion and extends from a port formed in the developer container to the outside of the developer container. When the drawing portion is drawn out, the loosening portion moves to loosen the developer.
摘要:
A developing device includes: a developer supporter that includes: a magnet member that has a plurality of magnetic poles; and a cylinder member; and a thickness regulation member wherein, of the plurality of the magnetic poles, a magnetic pole, which is placed at a position nearest to the thickness regulation member downstream in a rotation direction of the cylinder member from the thickness regulation member, has a maximum position of a normal magnetic flux density distribution, and the maximum position is placed outside the area of angle α downstream in the rotation direction of the cylinder member from the thickness regulation member, and wherein the diameter of the cylinder member is D, the projection width is W in a case where the thickness regulation member is projected onto the surface of the cylinder member, and the angle α is 180×W/(D×π).
摘要:
The present invention provides an exchangeable toner cartridge which can be attached to or detached from an apparatus main body. The toner cartridge includes the toner transfer member which is provided along a longitudinal direction of the toner cartridge and which can rotate. At the first range of the upstream side in a toner transfer direction the toner transfer member is formed into a substantially spiral shape, and at the second range of the downstream side in the toner transfer direction on a side of a toner supply port, toner transfer member has a shape different from that of the first range.
摘要:
The present invention provides an exchangeable toner cartridge which can be attached to or detached from an apparatus main body. The toner cartridge includes the toner transfer member which is provided along a longitudinal direction of the toner cartridge and which can rotate. At the first range of the upstream side in a toner transfer direction the toner transfer member is formed into a substantially spiral shape, and at the second range of the downstream side in the toner transfer direction on a side of a toner supply port, toner transfer member has a shape different from that of the first range.
摘要:
An image forming apparatus for forming an image with a developing agent, includes: a collecting-developing-agent occurring part in which the collecting developing agent to be collected in the developing agent occurs; a collection container for accommodating the collecting developing agent; a transporting part provided so as to connect the collection container and the collecting-developing-agent occurring part and for collecting and transporting the collecting developing agent occurring in the collecting-developing-agent occurring part; and a replacement part removably mounted in an apparatus body, wherein the collection container is mounted to be integrated with the replacement part.
摘要:
The present invention provides a method for quantitatively determining a reducing substance, which comprises reacting a reducing substance in a test specimen with iron (III) ions, reacting iron (II) ions formed by reduction of the iron (III) ions or residual iron (III) ions with a metal indicator which is capable of reacting specifically with the iron (II) ions or the residual iron (III) ions to undergo color development, and carrying out quantitative determination by measuring the degree of color development, wherein a chelating agent which is specific to copper ions is added to the test specimen before the reaction of the reducing substance with the iron (III) ions; and a reagent used for it.
摘要:
A voltage applying section (32) is connected to a silicon substrate (1). Emission of radiation to a semiconductor device causes a large number of holes to accumulate within a BOX layer (2) in the vicinity of the interface with respect to a silicon layer (3). The amount of accumulation of holes increases with a lapse of time. A voltage applying section (32) applies a negative voltage which decreases with the lapse of time to the silicon substrate (1) in order to cancel out a positive electric field resulting from the accumulated holes. The voltage applying section (32) includes a time counter (30) for detecting the lapse of time and a voltage generating section (31) connected to the silicon substrate (1) for generating a negative voltage (V1) which decreases in proportion to the lapse of time based on the result of detection (time T) carried out by the time counter (30). Consequently, a semiconductor device capable of suppressing occurrence of total dose effects is obtained.