摘要:
Wireless mobile communication (WMC) devices located in operating proximity of each other may be enabled to form a mesh (ad hoc wireless) network. WMC devices in a mesh network may form a queuing system wherein each WMC device may store data forwarded to and/or from other WMC devices in the mesh network. Each WMC device in the mesh network may have different queuing capability based on a plurality of factors that may comprise internal factors such as processing, storage, power, and/or connectivity. The mesh network may comprise an internal addressing scheme that may enable utilization of the queuing system whether or not WMC devices in the mesh network are communicatively coupled to external networks.
摘要:
A wireless mobile communication (WMC) device may discover available networks, and available local and/or remote resources. The WMC device may configure routes utilizing one or more of discovered resources and one or more available networks. The routes may be utilized to performed operations requested via the WMC device. A standardized language and/or protocol may be utilized in discovering and/or communicating with available resources and/or networks. The standardized language and/or protocol may enable commonality among the discovered networks and/or resources, and encryption of data communicated through the established routes. The standardized language and/or protocol may be updated and/or modified to incorporate new resources either by direct interactions between the new resources and the WMC device, or via existing available resources and/or networks. The discovery of resources and/or establishment of routes may be user-triggered, or it may be based on user preference information.
摘要:
A system and method is provided for processing and storing captured data in a wireless communication device based on detected biometric event data. The captured data may be acquired through a data acquisition system with devices or sensors in an integrated or distributed configuration. The captured data may include multimedia data of an event with time, date and/or location stamping, and captured physiological and behavioral biometric event data in response to the event. The captured data may be dynamically stored in a data binding format or as raw data in a local host device or communicated externally to be stored in a remote host or storage. At least one user preference may be specified for linking a biometric event data to the mapped, analyzed, categorized and stored captured data in a database. Captured data may be retrieved by matching biometric event data to at least one user preference from the database.
摘要:
A wireless mobile communication (WMC) device may be determine a quality of service (QOS) required to communicate data. The WMC device may utilize a plurality of physical layers available in the WMC device to retain the QOS throughout the data communication. The physical layers may comprise a plurality of wireless technologies and/or a plurality of transmission power levels within each wireless technology. Selection of physical layers that may be utilized may comprise determination of available QOS through the physical layers, available power in the WMC device, and/or power requirement for communicating data via the physical layers. Data encoding may also be utilized to alter size of communicated data while retaining the required QOS. Data encoding may comprise utilizing encoding schemes, data compression, and/or redundancy bits. A set of deadlines may be utilized to enable switching between available physical layers to ensure maintaining and/or achieving required QOS.
摘要:
Dynamically splitting jobs in wireless system between agnostic processor may comprise evaluating a job that a wireless mobile communication device may be requested to perform. The wireless mobile communication (WMC) device may evaluate a requested job to determine if one or more tasks may be sent to a remote device. The WMC device may consider such factors as information pertaining to the WMC device itself, information relating to the connection between the devices, and/or information pertaining to the remote device. This information may comprise such data as power availability in the wireless mobile communication device, processing load in the WMC device, processing and/or storage capabilities of the remote device, and characteristics of the connectivity between the two devices.
摘要:
A system and method is provided for handling data in wireless communication devices where data may be captured and linked to a personal journal via indexing and mapping of context data tags abstracted from captured data. The captured data may be retrieved by matching a query to one or more context data tags indexed and mapped to the personal journal. A user preference utilizing one or more of the context data tags linked to the personal journal may facilitate captured data retrieval. The captured data may include multimedia data of an event pre-tagged with indexed information such as user ID, time, date, location and environmental condition or optionally one or more user's biometric data in response to the event. The pre-tagged captured data may be stored in the local host device or transferred to a remote host or storage for later retrieval or post processing.
摘要:
Dynamically splitting jobs in wireless system between agnostic processor may comprise evaluating a job that a wireless mobile communication device may be requested to perform. The wireless mobile communication (WMC) device may evaluate a requested job to determine if one or more tasks may be sent to a remote device. The WMC device may consider such factors as information pertaining to the WMC device itself, information relating to the connection between the devices, and/or information pertaining to the remote device. This information may comprise such data as power availability in the wireless mobile communication device, processing load in the WMC device, processing and/or storage capabilities of the remote device, and characteristics of the connectivity between the two devices.
摘要:
An integrated circuit (IC) includes a wireless power receive circuit, a wireless communication module, and a circuit module. The wireless power receive circuit generates a supply voltage from a wireless power electromagnetic signal. The wireless communication module converts inter-chip outbound data into an inter-chip outbound wireless signal; transmits the inter-chip outbound wireless signal to another IC; receives an inter-chip inbound wireless signal from the other IC; and converts the inter-chip inbound wireless signal into inter-chip inbound data. The circuit module is powered by the supply voltage and is operable to generate the inter-chip outbound data; and process the inter-chip inbound data.
摘要:
A wireless power system includes a primary device and a secondary device. The primary device includes a power conversion unit, a function module, and a transceiver. The peripheral device includes a wireless power receiver circuit, a peripheral transceiver, and a peripheral unit. The power conversion unit converts a power source into an electromagnetic signal. The functional module executes a function regarding peripheral information. The transceiver communicates information regarding the electromagnetic signal and the peripheral information. The wireless power receiver circuit converts the electromagnetic signal into a voltage. The peripheral transceiver communicates the information regarding the electromagnetic signal and the peripheral information. The peripheral unit processes the peripheral information.
摘要:
An integrated circuit (IC) for use in a device includes a wireless power receiver circuit, a transceiver, and a processing module. The wireless power receiver circuit is operable to convert an electromagnetic signal into a voltage. The transceiver, when operable, transceives a control channel communication. The processing module is operable to: transition the device from an idle state to a charge state when a wireless power transmitter unit is detected; transition the device from the idle state to a wireless power operated state when a wireless power transmit circuit is detected and the device is enabled; and transition the device from the idle state to a battery operated state when the device is enabled and the wireless power transmit circuit is not detected.