Abstract:
The present invention provides a method for the targeted insertion of a nucleotide of interest into a specific chromosomal site within a plant cell. The method comprises the steps of: (a) providing a plant cell, the plant cell optionally but preferably having a heterologous target site on a chromosome thereof, wherein said target site is flanked by at least one recombination site; and then (b) transforming said plant cell with a transformation vector (e.g., with an Agrobacterium transformation vector) carrying a nucleotide sequence of interest, wherein said nucleotide sequence of interest is flanked by at least one recombination site that corresponds to the recombination sites of said target site, so that said nucleotide of interest is inserted into said chromosome at said target site (when a target site is employed).
Abstract:
An apparatus for slicing apples is provided. The slicer utilizes thinner blades than known in the art, with a thickness less than 300 microns, and preferably between 180 and 220 microns. Each of the thinner blades is supported against bending, warping or twisting by a novel clinch buckle which rigidly supports the outer end or ends of each blades. The clinch buckle is rigidly connected to bent tabs formed at the outer end or ends of each blade and supports the outer ends across the full width of the blades. The clinch buckle is supported by an outer blade support ring and is captured by the outer support ring to prevent rotation of the clinch buckle. The thinner blade reduces cell damage, reduces the amount of sealant or neutralizer needed to slow or prevent oxidation of enzymes released from cells ruptured by slicing, and delays the onset of browning. A serrated blade is used to further reduce the extent of cell damage.
Abstract:
Methods and apparatus for integrated circuit diagnosis, characterization or modification using a focused ion beam. A method for editing an integrated circuit includes acquiring an image of structures of an integrated circuit by applying a focused ion beam to an outer surface of the integrated circuit to visualize structures beneath the outer surface of the integrated circuit. The method includes using the image to find a location of a circuit element in the integrated circuit and then performing one or more editing operations on the circuit element by applying a focused ion beam to the location found.
Abstract:
A method and system for registering a CAD layout to a Focused Ion Beam image for through-the substrate probing, without using an optical image and without requiring biasing, includes an improved method of trench endpointing during the FIB milling operation with a low beam energy. The method further includes removal of Ga at the trench floor using XeF2, as well as the deposition of an insulating layer onto the trench floor.
Abstract:
A method for utilizing interference fringe patterns generated when milling a trench through a semiconductor substrate by a method such as FIB milling, to determine and optimize the thickness uniformity of the trench bottom. The interference fringes may be mapped and the mapping used to direct the FIB milling to those regions which are thicker to correct observed non-uniformities in the trench floor thickness by varying the pixel dwell time across the milled area. The interference fringe mapping may be used to develop computerized contour lines to automate the pixel dwell time variations as described above, for correcting non-uniformities in the trench floor thickness. The method may be applied to applications other than trench formation for backside editing, such as monitoring progress in forming a milled object.
Abstract:
A digital voice and/or data communication cable hanger provides a saddle support on a shaft fastened to a ceiling or beams or side wall by an integral fastening loop at one end. The other end of the hanger is shaped into a support loop for the cable. A saddle having the support shaft running through it closes the support loop to prevent cable from slipping out. The cable hanger is made by a tool using a rotating spool designed to shape the rigid shaft into a fastening loop at one end and a support loop at the other end. A second support loop can be selectively attached to the shaft between its ends.
Abstract:
An organic coating composition is described, which can be used to enrich the surface region of a metal-based substrate with aluminum. The composition comprises an aluminum-based powder and at least one organic resin, e.g., alkyds, epoxies, or silicone materials. At least some of the aluminum-based powder is in the form of substantially spherical powder particles. The coating composition is substantially free of hexavalent chromium. It can be applied to the substrate by a variety of techniques, such as spraying. It is then heat-treated, to cause diffusion of aluminum into the surface region of the substrate, e.g., a turbine engine component. The composition exhibits good thermal and chemical stability for extended periods of time. Related articles are also described.
Abstract:
A plurality of images, including a first image and a second image having a higher resolution than the first image, are aligned by generating an oversampled cross correlation image that corresponds to relative displacements of the first and second images, and, based on the oversampled cross correlation image, determining an offset value that corresponds to a misalignment of the first and second images. The first and second images are aligned to a precision greater than the resolution of the first image, based on the determined offset value. Enhanced results are achieved by performing another iteration of generating an oversampled cross correlation image and determining an offset value for the first and second images. Generating the oversampled cross correlation image may involve generating a cross correlation image that corresponds to relative displacements of the first and second images, and oversampling the cross correlation image to generate the oversampled cross correlation image.
Abstract:
A chart parser and a method for generating a parse chart for a sequence of input symbols in accordance with an abbreviated representation of a grammar. According to the method, an abbreviated representation of a grammar is stored as a set of finite-state automata, each finite-state automaton corresponding to a rule of the grammar. Chart edges are derived chart edges from the sequence of input symbols in accordance with the set of finite-state automata and are stored in the parse chart. Each chart edge spans a portion of the sequence of input symbols and may include a left input vertex index corresponding to the start of the span of the chart edge, a right input vertex index corresponding to the end of the span of the chart edge, a rule number, indicating which finite-state automaton of the plurality of finite-state automata has been used to generate the chart edge, a left state index, indicating the left most state of the finite-state automaton that has been matched and a right state index, indicating the right most state of the finite-state automaton that has been matched, the left-hand side of the rule and a path through the finite state comprising the right-hand side of the rule or so-called backpointers to the edges used to derive the current edge. The chart parser includes a chart controller and an agenda controller, together with associated memory.
Abstract:
A method of preparing a highly homogenous spinel Li1+XMn2−XO4+Y intercalation compound having a predetermined mean particle size and particle size distribution for 4 V secondary lithium and lithium ion cells is provided. The method comprises mixing at least one manganese compound having a predetermined particle size distribution with at least one lithium compound wherein the manganese compound has a mean particle size of between about 1 and 15 microns and the mean particle size of the lithium compound is less than that of the manganese compound The mixture is then fired in one or more firing steps within specific temperature ranges to form the Li1+XMn2−XO4+Y intercalation compound. Preferably, at least one firing step is at a temperature of between about 700° C. and 900° C. The Li1+XMn2−XO4+Y intercalation compounds may be used in the positive electrodes of secondary lithium and lithium ion cells to provide cells having high specific capacity, cycleability, and charge-discharge rate capability.