摘要:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.
摘要:
A full fill trench structure is described, including a microelectronic device substrate having a high aspect ratio trench therein and filled with silicon dioxide of a substantially void-free character and substantially uniform density throughout its bulk mass. A method of manufacturing a semiconductor product also is described, involving use of specific silicon precursor compositions for forming substantially void-free and substantially uniform density silicon dioxide material in the trench. The precursor fill composition may include silicon and germanium, to produce a microelectronic device structure including a GeO2/SiO2 trench fill material. A suppressor component may be employed in the precursor fill composition, to eliminate or minimize seam formation in the cured trench fill material.
摘要:
Provided is a method of manufacturing a semiconductor device. The method includes: (a) forming an oxide film having a predetermined thickness on a substrate by alternately repeating: (a-1) forming a layer containing a predetermined element on the substrate by supplying a source gas containing the predetermined element into a process vessel accommodating the substrate and exhausting the source gas from the process vessel; and (a-2) changing the layer containing the predetermined element into an oxide layer by supplying an oxygen-containing gas and an hydrogen-containing gas into the process vessel, wherein inside of the process vessel is under a heated atmosphere having a pressure lower than an atmospheric pressure; and exhausting the oxygen-containing gas and the hydrogen-containing gas from the process vessel; and (b) modifying the oxide film formed on the substrate by supplying the oxygen-containing gas and the hydrogen-containing gas into the process vessel, wherein the inside of the process vessel is under the heated atmosphere having the pressure lower than the atmospheric pressure, and exhausting the oxygen-containing gas and the hydrogen-containing gas from the process vessel.
摘要:
Methods of fabricating semiconductor structures incorporating tight pitch contacts aligned with active area features and of simultaneously fabricating self-aligned tight pitch contacts and conductive lines using various techniques for defining patterns having sublithographic dimensions. Semiconductor structures having tight pitch contacts aligned with active area features and, optionally, aligned conductive lines are also disclosed, as are semiconductor structures with tight pitch contact holes and aligned trenches for conductive lines.
摘要:
Embodiments of the present disclosure include semiconductor processing methods and systems. One method includes forming a material layer on a semiconductor substrate by exposing a deposition surface of the substrate to at least a first and a second reactant sequentially introduced into a reaction chamber having an associated process temperature. The method includes removing residual first reactant from the chamber after introduction of the first reactant, removing residual second reactant from the chamber after introduction of the second reactant, and establishing a temperature differential substantially between an edge of the substrate and a center of the substrate via a purge process.
摘要:
Methods of this invention relate to filling gaps on substrates with a solid dielectric material by forming a flowable film in the gap. The flowable film provides consistent, void-free gap fill. The film is then converted to a solid dielectric material. In this manner gaps on the substrate are filled with a solid dielectric material. According to various embodiments, the methods involve reacting a dielectric precursor with an oxidant to form the dielectric material. In certain embodiments, the dielectric precursor condenses and subsequently reacts with the oxidant to form dielectric material. In certain embodiments, vapor phase reactants react to form a condensed flowable film.
摘要:
Fabrication methods of a high frequency (sub-micron gate length) operation of AlInGaN/InGaN/GaN MOS-DHFET, and the HFET device resulting from the fabrication methods, are generally disclosed. The method of forming the HFET device generally includes a novel double-recess etching and a pulsed deposition of an ultra-thin, high-quality silicon dioxide layer as the active gate-insulator. The methods of the present invention can be utilized to form any suitable field effect transistor (FET), and are particular suited for forming high electron mobility transistors (HEMT).
摘要翻译:通常公开了AlInGaN / InGaN / GaN MOS-DHFET的高频(亚微米栅极长度)操作和由制造方法产生的HFET器件的制造方法。 形成HFET器件的方法通常包括新颖的双凹槽蚀刻和作为有源栅绝缘体的超薄,高质量二氧化硅层的脉冲沉积。 本发明的方法可用于形成任何合适的场效应晶体管(FET),并且特别适于形成高电子迁移率晶体管(HEMT)。
摘要:
A thin film can be formed on a substrate at a low temperature with a practicable film-forming rate. There is provided a semiconductor device manufacturing method for forming an oxide or nitride film on a substrate. The method comprises: exposing the substrate to a source gas; exposing the substrate to a modification gas comprising an oxidizing gas or a nitriding gas, wherein an atom has electronegativity different from that of another atom in molecules of the oxidizing gas or the nitriding gas; and exposing the substrate to a catalyst. The catalyst has acid dissociation constant pKa in a range from 5 to 7, but a pyridine is not used as the catalyst.
摘要:
A method and apparatus for treating a substrate is provided. A porous dielectric layer is formed on the substrate. In some embodiments, the dielectric may be capped by a dense dielectric layer. The dielectric layers are patterned, and a dense dielectric layer deposited conformally over the substrate. The dense conformal dielectric layer seals the pores of the porous dielectric layer against contact with species that may infiltrate the pores. The portion of the dense conformal pore-sealing dielectric layer covering the field region and bottom portions of the pattern openings is removed by directional selective etch.
摘要:
Provided is a method of manufacturing a semiconductor device. The method includes: loading a substrate into a process vessel; performing a process to form an film on the substrate by alternately repeating: (a) forming a layer containing an element on the substrate by supplying at least two types of source gases into the process vessel, each of the at least two types of source gases containing the element, and (b) changing the layer containing the element by supplying reaction gas into the process vessel, the reaction gas being different from the at least two types of source gases; and unloading the processed substrate from the process vessel.