Abstract:
A surface-treated steel sheet for a battery container includes a steel sheet, an iron-nickel diffusion layer formed on the steel sheet, and a nickel layer formed on the iron-nickel diffusion layer and constituting the outermost layer. When the Fe intensity and the Ni intensity are continuously measured from the surface of the surface-treated steel sheet for a battery container along the depth direction with a high frequency glow discharge optical emission spectrometric analyzer, the thickness of the iron-nickel diffusion layer being the difference (D2−D1) between the depth (D1) at which the Fe intensity exhibits a first predetermined value and the depth (D2) at which the Ni intensity exhibits a second predetermined value is 0.04 to 0.31 μm; and the total amount of the nickel contained in the iron-nickel diffusion layer and the nickel contained in the nickel layer is 10.8 to 26.7 g/m2.
Abstract:
A coating process for applying a bifurcated coating to an article is disclosed including applying an aluminizing slurry to a first portion of the article, applying a chromizing slurry to a second portion of the article, and simultaneously heat treating the article, the aluminizing slurry, and the chromizing slurry. Heat treating the aluminizing slurry forms an aluminide coating on the first portion of the article and an aluminide diffusion zone between the article and the aluminide coating. Heat treating the chromizing slurry forms a chromide coating on the second portion of the article and a chromide diffusion zone between the article and the chromide coating. The first portion and the second portion are both maintained in an unmasked state while applying the aluminizing slurry and the chromizing slurry and during the heat treating.
Abstract:
The present invention discloses a rare earth permanent magnet and a method for preparing same. The material of the rare earth permanent magnet has a heavy rare earth element volume diffusion phenomenon at a depth of 5 μm to 100 μm from the surface of the magnet to the interior of the magnet along the magnetic field orientation direction, thereby forming a volume diffusion layer region; the volume diffusion layer region is divided into magnet units having a volume of 10*100*5 μm, and the concentration difference of the heavy rare earth elements of the magnet units at different positions in the volume diffusion layer is below 0.5 at %. The present invention provides a sintered NdFeB magnet of high intrinsic coercive force Hcj on the premise of not influencing the remanence Br and the maximum magnetic energy product (BH)max of products. In the method for preparing the rare earth permanent magnet, microwave heat treatment is performed on a blank magnet coated with heavy rare earth source slurry in a vacuum condition. This method can effectively improve the heating efficiency, reduce the heat treatment time, lower the energy consumption, and reduce the production cost of the magnet.
Abstract:
The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.
Abstract:
An article including a metal substrate, an anti-coking catalyst layer and an alumina barrier layer disposed between the metal substrate and the anti-coking catalyst layer is provided. A process for making the article is also provided.
Abstract:
The present invention discloses a rare earth permanent magnet and a method for preparing same. The material of the rare earth permanent magnet has a heavy rare earth element volume diffusion phenomenon at a depth of 5 μm to 100 μm from the surface of the magnet to the interior of the magnet along the magnetic field orientation direction, thereby forming a volume diffusion layer region; the volume diffusion layer region is divided into magnet units having a volume of 10*100*5 μm, and the concentration difference of the heavy rare earth elements of the magnet units at different positions in the volume diffusion layer is below 0.5 at %. The present invention provides a sintered NdFeB magnet of high intrinsic coercive force Hcj on the premise of not influencing the remanence Br and the maximum magnetic energy product (BH)max of products. In the method for preparing the rare earth permanent magnet, microwave heat treatment is performed on a blank magnet coated with heavy rare earth source slurry in a vacuum condition. This method can effectively improve the heating efficiency, reduce the heat treatment time, lower the energy consumption, and reduce the production cost of the magnet.
Abstract:
The present invention is directed to a process for tin coating a metallic substrate, and a process for hardening a tin layer and wire having a tin coatingThe invention relates in particular to a process for tin coating a wire. In the process, firstly a tin layer is applied, and a metal layer made of a metal different to tin is applied thereto. Then, the layers are subjected to a diffusion annealing operation.
Abstract:
A surface of an article is modified by first disposing a nickel-enriched region at the surface of a substrate, then enriching the nickel-enriched region with aluminum to form an aluminized region, and finally removing at least a portion of the aluminized region to form a processed surface of the substrate. Upon removal of this material, the roughness of the surface is reduced from a comparatively high initial roughness value to a comparatively low processed roughness value. In some embodiments, the processed roughness is less than about 95% of the initial roughness. Moreover, the sequence of steps described herein may be iterated one or more times to achieve further reduction in substrate surface roughness.
Abstract:
Disclosed is a process for producing a wear-resistant layer, in particular on components of gas turbines or aero engines. The process comprises providing a component with a titanium material on at least part of a surface on which the wear-resistant layer is to be produced, applying a solder formed from a cobalt base material to the titanium material, soldering the solder to the titanium material by applying heat and producing at least one diffusion zone between solder and titanium material which comprises intermetallic phases.
Abstract:
Producing an RFeB system sintered magnet with high corrosion resistance and low loss of energy in an RFeB system sintered magnet with high magnetic properties produced by a grain boundary diffusion process. A paste prepared by mixing an organic matter having a molecular structure including an oxygen atom and a metallic powder containing a heavy rare-earth element which is at least one element selected from the group of Dy, Ho and Tb, is applied to the surface of an RFeB system sintered compact composed of crystal grains whose main phase is R2Fe14B containing, as a main rare-earth element, a light rare-earth element which is at least one element selected from the group of Nd and Pr. A heating process for a grain boundary diffusion treatment is performed. As a result, a protective layer containing an oxide of the light rare-earth element is formed on the surface.
Abstract translation:在晶界扩散过程产生的具有高磁特性的RFeB系烧结磁体中,生产出具有高耐腐蚀性和低能量损耗的RFeB系烧结磁体。 通过将含有氧原子的分子结构的有机物和含有选自Dy,Ho和Tb中的至少一种元素的重稀土元素的金属粉末混合而制备的糊料涂覆在 由主晶相R 2 Fe 14 B的晶粒构成的RFeB系烧结体作为主稀土元素,含有选自Nd和Pr中的至少一种元素的轻稀土元素。 进行晶界扩散处理的加热处理。 结果,在表面上形成含有轻稀土类元素的氧化物的保护层。