摘要:
Techniques for transmitting data and resource signals (RS) are provided. According to certain aspects, an access point may determine RS resource locations related to one or more access points in a CoMP set transmitting a common reference signal (CRS), map data transmissions initially over resources other than those related to the RS resource locations, and map remaining data transmissions over resources related to the RS resource locations. According to certain aspects, a wireless device may receive a signal from access points in a coordinated multiple point (CoMP) communication set comprising a common reference signal (CRS) superimposed over data, determine CRS locations in the signal that correspond to the CRS, and decode data from the signal based at least in part on the determined CRS locations.
摘要:
Systems and methodologies are described that facilitate adaptively communicating data to wireless devices. An access point can precode a dedicated reference signal (DRS) for transmitting to a wireless device, and the wireless device can receive the precoded DRS. The wireless device can determine the precoder by estimating a channel of the DRS and can provide channel condition feedback to the access point. The access point can create data signals including a single or a burst of data transmissions according to the feedback and can precode the data signals using the same precoder. The wireless device can additionally decode the data signals using the precoder. Moreover, the access point can cycle through precoders according to a patterned, random, pseudo-random, and/or similar sequence.
摘要:
Systems and methodologies are described that facilitate responding to overload indicators in a wireless communication environment. A non-serving base station can send an over-the-air (OTA) overload indicator (OI) and a backhaul OI. A UE can receive the OTA OI from the non-serving base station, generate a report based upon the OTA OI, and send the report to a serving base station. The serving base station can receive the report from the UE, and generate a power control command for the UE based at least in part upon the report. Moreover, the serving base station can generate the power control command for the UE further based upon the backhaul OI received from the non-serving base station. For example, the UE can be configured to ignore the OTA OI. By way of another example, the serving base station can cause the non-serving base station to inhibit sending the backhaul OI.
摘要:
Devices and methods are provided for implementing an over-the-air (OTA) broadcast of an overload indication to reduce interference levels at neighboring node(s). In one embodiment, the method involves receiving the OTA broadcast of the overload indication from a neighboring node. The method further involves performing transmit power control based upon the received overload indication to reduce Interference over Thermal (IoT) noise at the neighboring node (e.g., by adjusting the transmit power spectral density). Such a method may be performed, for example, by an access terminal or a small base node.
摘要:
Techniques for transmitting data from multiple transmit antennas using space orthogonal resource transmit diversity (SORTD) are described. For the SORTD scheme, a different orthogonal resource may be assigned to each transmit antenna. Data may be sent from the multiple transmit antennas using multiple orthogonal resources. In one design, a UE may process at least one information bit (e.g., with joint or independent coding) to obtain first and second sets of at least one modulation symbol. The UE may process the first set of modulation symbol(s) for transmission from the first transmit antenna using a first orthogonal resource. The UE may process the second set of modulation symbol(s) for transmission from the second transmit antenna using a second orthogonal resource. Each orthogonal resource may include a different reference signal sequence or a different set of reference signal sequence and orthogonal sequence.
摘要:
Systems and methodologies are described that facilitate cycling through precoders for transmitting wireless network communications in a time domain. The precoders can be cycled according to a precoder sequence for each data symbol transmission. When the last precoder is selected the cycle can begin again, a new precoder sequence can be received or defined, and/or the like. A precoder sequence related to a subset of precoders present in a wireless device can be defined sequentially, cyclically shifted according to an identifier or one or more communications parameters, randomly, pseudo-randomly according to an identifier or one or more communications parameters, and/or the like. In addition, the precoder sequence can be utilized to select a precoder for one or more retransmissions. Such cycling of precoders can increase transmit diversity.
摘要:
A system and method for facilitating resource management in OFDM systems is provided. The system permits different and flexible resource cell metric operations levels (e.g. uplink load management, admission control, congestion control, signal handoff control) for different sub-bands. For the uplink load management, there are multiple distinct load operation points (e.g. IoT, RoT) per sub-band group instead of the same operation level across the entire available band. The sub-band groups encompass the entire band. The facilitation system also comprises a variety of transmitting protocols, command increment variable stepsize methods and robust command response methods. The system thus provides more flexible reverse link resource management and more efficient utilization of the bandwidth.
摘要:
Techniques for assigning acknowledgement (ACK) resource to a user equipment (UE) in a wireless communication system are described. In one design, a first parameter indicative of radio resources (e.g., the lowest index of at least one physical resource block) allocated to the UE for data transmission may be obtained. A second parameter indicative of another resource (e.g., a cyclic shift of a reference signal sequence) assigned to the UE for data transmission may also be obtained. The first and/or second parameter may be restricted, and each restricted parameter may be limited to a set of allowed values among all available values for the parameter. ACK resource assigned to the UE for data transmission may be determined based on the first and second parameters. In one design, sequential first parameter values may be mapped to sequential ACK resources indices. In another design, mirror mapping with different mapping directions may be used for different allowed values of the second parameter.
摘要:
Techniques for performing interference and power control in a wireless communication system are described. An asymmetric power control scheme adjusts the transmit power of a user equipment (UE) in an asymmetric manner, e.g., with different up and down step sizes. In one design, a parameter value may be determined based on received SINR of at least one Node B. Up and down steps may be determined based on the parameter value and may have different sizes. At least one overloading indicator from at least one neighbor Node B may be obtained. The transmit power of the UE may be adjusted based on the up and down steps and the at least one overloading indicator. For example, the transmit power may be increased by the up step if an overloading indicator from the strongest neighbor Node B is not received and may be decreased by the down step otherwise.
摘要:
Systems and methods for communicating control data for multiple data channels using a single control channel. In one embodiment, a method is implemented in a WCDMA communications system. This method includes combining data rate information for a first data channel and data rate information for a second data channel in a mobile station, encoding the combined data rate information and transmitting the encoded combined data rate information from the mobile station to a base station via a single control channel. This method further includes receiving the encoded combined data rate information in the base station, decoding the encoded combined data rate information to produce the combined data rate information, and extracting the data rate information for the first and second data channels and decoding the first and second data channels using this information.