Abstract:
The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate has an upper surface. The high voltage device includes: a second conductive type buried layer, which is formed in the substrate; a first conductive type well, which is formed between the upper surface and the buried layer; and a second conductive type well, which is connected to the first conductive type well and located at different horizontal positions. The second conductive type well includes a well lower surface, which has a first part and a second part, wherein the first part is directly above the buried layer and electrically coupled to the buried layer; and the second part is not located above the buried layer and forms a PN junction with the substrate.
Abstract:
The present invention discloses a direct current (DC) light emitting device control circuit with dimming function, and a method thereof, wherein the dimming function is provided in a feedback loop for feeding back a feedback signal from an output terminal to a power switch control circuit; the feedback signal relates to an output current supplied to the DC light emitting device. The present invention adjusts the feedback signal according to the desired brightness of the DC light emitting device. The present invention controls a power switch according to the adjusted feedback signal, such that the output current supplied to the DC light emitting device is adjusted, and accordingly the brightness of the DC light emitting device is adjusted below the full brightness.
Abstract:
The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
Abstract:
The present invention discloses a double diffused drain metal oxide semiconductor (DDDMOS) device and a manufacturing method thereof. The DDDMOS device is formed in a substrate, and includes a first well, a gate, a diffusion region, a source, and a drain. A low voltage device is also formed in the substrate, which includes a second well and a lightly doped drain (LDD) region, wherein the first well and the diffusion region are formed by process steps which also form the second well and the LDD region in the low voltage device, respectively.
Abstract:
The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: an isolation structure for defining device regions; a gate with a ring-shaped structure; a drain located outside the ring; and a lightly doped drain, a source, and a body electrode located inside the ring. To increase the sub-threshold voltage at the corners of the gate, the corners are located completely on the isolation structure, or the lightly doped drain is apart from the corners by a predetermined distance.
Abstract:
The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
Abstract:
The present invention discloses an adaptive phase-shifted synchronization clock generation circuit and a method for generating phase-shifted synchronization clock. The adaptive phase-shifted synchronization clock generation circuit includes: a current source generating a current which flows through a node to generate a node voltage on the node; a reverse-proportional voltage generator coupled to the node for generating a voltage which is reverse-proportional to the node voltage; a ramp generator receiving a synchronization input signal and generating a ramp signal; a comparator comparing the reverse-proportional voltage to the ramp signal; and a pulse generator for generating a clock signal according to an output from the comparator.
Abstract:
The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: an isolation structure for defining device regions; a gate with a ring-shaped structure; a drain located outside the ring; and a lightly doped drain, a source, and a body electrode located inside the ring. To increase the sub-threshold voltage at the corners of the gate, the corners are located completely on the isolation structure, or the lightly doped drain is apart from the corners by a predetermined distance.
Abstract:
The present invention discloses a rail-to-rail comparator. The rail-to-rail comparator includes: a positive voltage rail providing a positive supply voltage, a ground voltage rail providing a ground voltage, an input stage, and an output stage. The input stage includes: a positive and a negative input terminals for receiving a first input signal and a second input signal; a first differential amplifier circuit, which includes a pair of depletion NMOS transistors to generate a first pair of differential currents; and a second differential amplifier circuit, which includes a pair of native NMOS transistors to generate a second pair of differential currents. The output stage is coupled to the first differential amplifier circuit and the second differential amplifier circuit, and generates an output signal related to a difference between the first input signal and the second input signal.
Abstract:
The present invention discloses a hybrid high voltage device and a manufacturing method thereof. The hybrid high voltage device is formed in a first conductive type substrate, and includes at least one lateral double diffused metal oxide semiconductor (LDMOS) device region and at least one vent device region, wherein the LDMOS device region and the vent device region are connected in a width direction and arranged in an alternating order. Besides, corresponding high voltage wells, sources, drains, body regions, and gates of the LDMOS device region and the vent device region are connected to each other respectively.