Abstract:
A method of making a retention catheter of the Foley type comprising the steps of insert molding a tip onto a catheter shaft with the proximal end of balloon attached thereto and simultaneously insert bonding the distal end of the balloon into the catheter tip.
Abstract:
Balloon catheter includes an outer shaft having a hypotube and a monolithic single-layer distal outer member, a balloon in fluid communication with an inflation lumen, and a monolithic inner tubular member having a guidewire lumen defined therethrough. The outer shaft has the inflation lumen defined therethrough. The monolithic single-layer distal outer member is necked to a reduced diameter along an entire length thereof. A proximal end of the monolithic single-layer distal outer member is coupled to the hypotube. A distal section of the hypotube comprises a skive defined by a first angled cut, an axial cut, and a second angled cut. The balloon has a proximal balloon shaft coupled to a distal end of the monolithic single-layer distal outer member. The monolithic inner tubular member extends distally from a proximal port in the monolithic single-layer distal outer member through the balloon to form a tip.
Abstract:
A device for snugging a balloon of a catheter against an inner wall of an intra-corporeal lumen or surface serviced by the catheter includes a hollow column having a top end and a bottom end, forming a throughway sized to accommodate a tube of the catheter, and a flange extending from the bottom end of the hollow column generally perpendicularly to length of the hollow column. A slit is formed in the hollow column and the flange through which the hollow column is connectable to the tube of the catheter. The catheter is tugged to contact the balloon to the inner wall of the lumen, and the device is fixed to the tube of the catheter atop the skin of a body serviced by the catheter to tension pressure of the balloon against the inner wall.
Abstract:
A sheathed tubular semi-rigid balloon catheter for performing probing, irrigation, dilation, suction and potential intubation of the nasolacrimal system or paranasal sinus system to treat for stenosis or obstruction. The catheter includes a sheathed tubular probe portion through which a tracer fluid can be injected and through which suctioning of blood or other material can be conducted. The sheath portion of the device can have a distal segment that is inflated in order to dilate parts the nasolacrimal or paranasal sinus system. The high axial load accommodating catheter tool includes a more secure and inexpensively manufactured bond between the metallic semi-rigid tube of the probe portion and the plastic hand-manipulable, multi-connector hub using an enlarged bonding collar.
Abstract:
A balloon catheter may include a multi-lumen tube having an inflation lumen and a guide wire lumen. The multi-lumen tube may include a proximal end and a distal end and may terminate at a distal tip. The catheter may include an extension tube extending distally from the distal tip of the multi-lumen tube and a dilatation balloon disposed about the multi-lumen tube and the extension tube. The distal tip of the multi-lumen tube may be under the balloon.
Abstract:
A medical device having an elongate support structure and an inflatable balloon including a first-end portion secured to the support structure at a first location, a second-end portion secured to the support structure at a second location distal to the first location, and a middle-body portion. The first-end portion has a wall thickness greater than a wall thickness of the middle-body portion; the balloon defines a sealed interior through which the support structure extends. The balloon being stretch-mounted to the support structure in tension relative to the support structure; the balloon is formed in a diamond-like configuration that transitions to a substantially spherical configuration when the balloon is inflated to a inflation pressure that is at least about ten percent greater than atmospheric pressure, such that when inflated to the inflation pressure and anchored in an anatomical body region, resists movement of the support structure relative to the balloon.
Abstract:
A medical device having an elongate support structure and an inflatable balloon including a first-end portion secured to the support structure at a first location, a second-end portion secured to the support structure at a second location distal to the first location, and a middle-body portion. The first-end portion has a wall thickness greater than a wall thickness of the middle-body portion; the balloon defines a sealed interior through which the support structure extends. The balloon being stretch-mounted to the support structure in tension relative to the support structure; the balloon is formed in a diamond-like configuration that transitions to a substantially spherical configuration when the balloon is inflated to a inflation pressure that is at least about ten percent greater than atmospheric pressure, such that when inflated to the inflation pressure and anchored in an anatomical body region, resists movement of the support structure relative to the balloon.
Abstract:
Articulation devices, systems, methods for articulation, and methods for fabricating articulation structures will often include simple balloon arrays, with inflation of the balloons interacting with elongate skeletal support structures so as to locally alter articulation of the skeleton. The balloons can be mounted to a substrate of the array, with the substrate having channels that can direct inflation fluid to a subset of the balloons. The articulation array structure may be formed using simple planar 3-D printing, extrusion, and/or laser micromachining techniques. The skeleton may comprise a simple helical coil or interlocking helical channels, and the array can be used to locally deflect or elongate an axis of the coil under control of a processor. Liquid inflation fluid may be directed to the balloons from an inflation fluid canister, and may vaporize within the channels or balloons of the articulation system, with the inflation system preferably including valves controlled by the processor. The articulation structures can be employed in minimally invasive medical catheter systems, and also for industrial robotics, for supporting imaging systems, for entertainment and consumer products, and the like.