Abstract:
A radiation therapy device includes an irradiation field limiting apparatus. The irradiation field limiting apparatus includes a collimator for adjusting the irradiation field, and a verification apparatus for visually verifying the irradiation field. The verification apparatus is configured such that the irradiation field is optically displayed on a patient that is positioned at a distance from the isocenter of the radiation therapy device.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, the target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial marker is used to identify the location of the target tissues. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A calibration device includes a structure, and a target object that is moveably coupled to the structure, the target object being a physical target towards which an alignment device can be aimed. A calibration device includes a block having a first opening, and a target object that is viewable through the first opening. A method of calibrating an alignment device includes determining a target position associated with a machine, placing a target object at the target position, and adjusting the alignment device using the target object. A calibration device includes a target object, the target object being a physical target towards which an alignment device can be aimed, wherein the target object comprises a first feature for indicating a first orientation of the target object.
Abstract:
A radiosurgery system is described that delivers a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, ocular structures are placed in a global coordinate system, based on ocular imaging, which leads to direction of an automated positioning system. In some embodiments, the position of an ocular structure is tracked and related to a radiosurgery system. In some embodiments, a treatment plan is utilized for a specific disease to be treated and/or structures to be avoided. In some embodiments, a fiducial aids in positioning the system. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
A radiation treatment system (100) for accurately delivering radiation to a targeted site within a cancer patient (108) that includes a modular patient support system and a patient positioner (114). The modular patient support system includes a modularly expandable patient pod (200) and at least one immobilization device, such as, for example, a rigid moldable foam cradle (350). The patient pod (200) includes a generally hemi-cylindrical support shell (212) that extends longitudinally between proximal edge (214) and distal edge (216), and transversely between two lateral edges (222, 224). In one embodiment, the lateral edges (222, 224) are tapered to minimize edge effects that result when radiation beams traverse the lateral edges (222, 224).
Abstract:
Three camera rigs are connected by wiring to a computer. The computer is also connected to a treatment apparatus. A mechanical couch is provided as part of the treatment apparatus such that under the control of the computer the relative positions of the mechanical couch and the treatment apparatus may be varied. The camera rigs obtain video images of a patient lying on the mechanical couch the computer processes these images to generate a three-dimensional model of the surface of the patient which is utilized to position the patient relative to the treatment apparatus.
Abstract:
A patient alignment system for diagnostic and therapeutic procedures where the embodiment is mounted or referenced to the patient positioning interface such as add-on positioning devices, or directly with the diagnostic and/or therapeutic treatment table or couch. Some patient and equipment positions can obstruct fixed wall or ceiling mounted lasers or an optical view of the anatomy being imaged or treated and patient set-up and alignment may become less accurate or not possible. The patient alignment system may use lasers, cameras or other optical means, ultrasound or RF transceiver technologies, or a combination of multiple technologies, and be mounted in positions, such as below the treatment table or couch and offer a solution to patient alignment for such circumstances. Prone breast imaging and treatment is one example where this system may be used to advantage.
Abstract:
A radiosurgery system is described that is configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, specifically macular degeneration. In some embodiments, the ocular structures are placed in a global coordinate system based on ocular imaging. In some embodiments, the ocular structures inside the global coordinate system lead to direction of an automated positioning system that is directed based on the ocular structures within the coordinate system. In some embodiments, the position of the ocular structure is tracked and related to the status of the radiosurgery system. In some embodiments, a treatment plan is utilized in which beam energy and direction and duration of time for treatment is determined for a specific disease to be treated and/or structures to be avoided. In some embodiments, the structure is an eye and the eye is tracked by the system. In some embodiments, the eye is held in place and in some embodiments, the eye is fixed by the patient. In some embodiments, a fiducial is placed on the eye to aid in positioning. In some embodiments, a reflection off the eye is used to aid in positioning. In some embodiments, radiodynamic therapy is described in which radiosurgery is used in combination with other treatments and can be delivered concomitant with, prior to, or following other treatments.
Abstract:
Radiosurgery systems are described that are configured to deliver a therapeutic dose of radiation to a target structure in a patient. In some embodiments, inflammatory ocular disorders are treated, and in some embodiments, other disorders or tissues of a body are treated with the dose of radiation. In some embodiments, target tissues are placed in a global coordinate system based on ocular imaging. In some embodiments, a fiducial marker is used to identify the location of the target tissues.