Abstract:
An exemplary method for handling passenger requests during elevator system modernization includes modernizing elevator cars over time. The modernized elevator cars are capable of servicing destination requests placed outside of an elevator car and include an indication of a desired destination. The exemplary method includes assigning an elevator car to respond to a new pending destination request according to a selected criterion for selecting between a modernized elevator car and an elevator car that has not yet been modernized. The method includes automatically updating the selected criterion responsive to a change in a number of modernized elevator cars. A percentage of the elevator cars that are not yet modernized are reserved and new pending requests are assigned to a modernized elevator car if a percentage of modernized cars plus the reserved percentage is greater than a current percentage of pending requests assigned to modernized elevator cars.
Abstract:
In a method for controlling an elevator system, hints relating to potential elevator passengers are received from at least one observation point connected to the elevator system. Based on the hints, forecasts relating to potential elevator passengers are prepared, on the basis of which forecasts one or more anticipatory control actions are executed.
Abstract:
An elevator group control apparatus includes a parameter calculating unit for determining a weighting factor for an item to be evaluated, which is calculated from a running distance estimated by an estimation arithmetic operation unit by taking into consideration a relation between a running distance of an elevator and a passenger average waiting time, and an evaluation arithmetic operation unit for calculating a total evaluated value from an item to be evaluated of a passenger waiting time, an item to be evaluated of the running distance, and the weighting factor determined by the parameter calculating unit. The elevator group control apparatus selects an elevator whose total evaluated value is the best from among the plurality of elevators, and assigns a hall call to the selected elevator.
Abstract:
In an elevator system floors each include: a hall registration device that places a plurality of car calls for moving a car to destination floors different from one another; and a display device that displays the car that has been assigned the plurality of car calls. A limit value setting mechanism sets, for each of the plurality of floors separately, a limit value for limiting a count of the plurality of car calls that can be assigned to the same car. A count-up mechanism obtains, when a new car call is made, a call count of each car by a given method, based on information about the plurality of car calls that have been assigned to the car. A candidate car selector compares the limit value set to a floor where the new car call is made and the call count of the each car, to thereby select, as a candidate car, the car to which the new car call can be assigned from among the cars.
Abstract:
A method and a display for elevator allocation evaluating are provided. When an elevator allocated to a hall call is selected by employing two different view points such as a real and a future call evaluation index, an elevator allocation reason and a balance between the two view points can be easily grasped. An elevator allocated to a hall call is evaluated on orthogonal coordinates in which the real call evaluation index and the future call evaluation index are defined as an X and a Y coordinate axis. Evaluation indexes of first to fourth elevator cars are evaluated by employing contour lines of a synthetic evaluation function, which is represented as the real and the future call evaluation index. A weight for allocating is displayed visually.
Abstract:
A perceived waiting time for a hall call to be answered by a car is determined as a constant times the square (46) of the summation (45) of remaining response time (39) and the amount of time that has expired since the call was registered (38). The time that may be perceived by a passenger to travel to the passenger's destination is determined as a constant times the square (51) of the distance between an estimated destination floor and the floor of the call and a constant times an estimated number of new hall stops and committed hall stops that each car will make (47). Perceived service time is (52) the sum of perceived wait time and perceived travel time. Constants are adjusted so that a long waiting time will yield a quick travel time. Assignment of calls to cars (60) is in accordance (61) with the smallest summation of square (59) of perceived service times for all waiting up calls and down calls.
Abstract:
The present invention relates to a method for controlling the elevators of an elevator group in a building divided into zones comprising different floors in such manner that, at the passenger's departure floor, the elevators are given calls to floors beyond the zone limits of the departure zone. According to the invention, the aforesaid call is divided into two or more calls.
Abstract:
The invention relates to a method for controlling an elevator installation with at least one shaft and a number of cars, it being possible to make at least two cars travel separately up and down along a common traveling path and a passenger being able to enter a destination call by means of an input unit disposed outside the shaft and the destination call being allocated to a car in dependence on an allocation assessment. To develop the method in such a way that the transporting capacity can be increased, with the cars which can be made to travel along a common traveling path hindering one another as little as possible, it is proposed according to the invention that, in the case of allocation of the destination call to one of the cars which can be made to travel along the common traveling path, the portion of the traveling path required for serving the destination call is assigned to this car and blocked for the time of the assignment for the other cars. Furthermore, an elevator installation for carrying out the method is proposed.
Abstract:
The present invention provides a method and apparatus for use in elevator systems for assigning new hall calls to one of a plurality of available elevator cars. According to the invention, a call cost is calculated for each car for accepting the new hall call. The call cost is a function of the estimated time to the desired destination of the passenger requesting the new hall call and of the delay that other passengers who are using the elevator car will experience. In one embodiment, a destination is inferred for the passenger requesting the new hall call. In another embodiment, the passenger requesting the hall call may input a desired destination at the time the hall call request is made. The elevator system of the present invention allows for use of both standard up/down hall call entry devices and destination entry devices that allow a particular destination to be entered by a passenger at the time a hall call is requested.
Abstract:
The present invention provides a method and apparatus for use in elevator systems for assigning new hall calls to one of a plurality of available elevator cars. The method comprises calculating for each car a call cost for accepting the new hall call. The call cost is a function of the estimated time to the desired destination of the passenger requesting the new hall call and of the delay that other passengers who are using the elevator car will experience. In one embodiment, a destination is inferred for the passenger requesting the new hall call. In another embodiment, the passenger requesting the hall call may input a desired destination at the time the hall call request is made. The elevator system of the present invention allows for use of both standard up/down hall call entry devices and destination entry devices that allow a particular destination to be entered by a passenger at the time a hall call is requested.