摘要:
The invention relates to a crude glycerol-based product comprising glycerol alkyl ethers, to a purification process comprising a treatment of evaporative concentration, of evaporative crystallization, of distillation, of fractional distillation, of stripping, or of liquid-liquid extraction and to the use of the purified product in the manufacture of dichloropropanol.
摘要:
Process for the manufacture of dichloropropanol in which glycerol is reacted with a chlorinating agent comprising hydrochloric acid in a liquid medium in equilibrium with a vapor phase and in which the condensation of a fraction exhibiting the composition of the vapor phase is prevented.
摘要:
Process for preparing a chlorohydrin, wherein a polyhydroxylated aliphatic hydrocarbon whose total metal content, expressed in elemental form, is greater than or equal to 0.1 μg/kg and less than or equal to 1000 mg/kg is reacted with a chlorinating agent.
摘要:
Process for producing a chlorohydrin by reaction between a multihydroxylated-aliphatic hydrocarbon, an ester of a multihydroxylated-aliphatic hydrocarbon, or a mixture thereof, and a chlorinating agent, according to which the multihydroxylated-aliphatic hydrocarbon, the ester of a multihydroxylated-aliphatic hydrocarbon, or the mixture thereof used contains at least one solid or dissolved metal salt, the process comprising a separation operation to remove at least part of the metal salt.
摘要:
The present invention relates to a process for converting a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin, by contacting the multihydroxylated-aliphatic hydrocarbon or ester thereof starting material with a source of a superatmospheric partial pressure of hydrogen chloride for a sufficient time and at a sufficient temperature, and wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts. In addition, certain catalysts of the present invention may be used in the present process at superatmospheric, atmospheric and subatmospheric pressure conditions with improved results.
摘要:
A process for converting multihydroxylated-aliphatic hydrocarbon compound(s) and/or ester(s) thereof to chlorohydrins and/or esters thereof is disclosed in which one or more of multihydroxylated-aliphatic hydrocarbon compound(s) and/or ester(s) thereof and/or monochlorohydrin(s) and/or ester(s) thereof with at least one chlorinating feed stream comprising at least one chlorinating agent and at least one impurity having a boiling point below the boiling point of the chlorohydrin product having the lowest boiling under hydrochlorination conditions, optionally in the presence of water, one or more catalyst(s), and/or one or more heavy byproduct(s) in a reaction vessel under hydrochlorination conditions, wherein the liquid-phase reaction mixture is maintained at a temperature below the boiling point of the chlorohydrin product having the lowest boiling point under hydrochlorination conditions and greater than the boiling point(s) of the at least one impurity and a vapor phase vent stream comprising the at least one impurity is removed from the liquid phase reaction mixture. An apparatus suitable for carrying out the disclosed process is illustrated in FIG. 1 of the drawings. The process and apparatus improve conversion rates and/or provide for recovery of chlorinating agent for lower operating costs.
摘要:
The present invention relates to a process for converting a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin, by contacting the multihydroxylated-aliphatic hydrocarbon or ester thereof starting material with a source of hydrogen chloride at superatmospheric, atmospheric and subatmospheric pressure conditions for a sufficient time and at a sufficient temperature, preferably wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts; said process carried out without a step undertaken to specifically remove volatile chlorinated hydrocarbon by-products or chloroacetone, wherein the combined concentration of volatile chlorinated hydrocarbon by-products and chloroacetone is less than 2000 ppm throughout any stage of the said process.
摘要:
The present invention relates to a process for converting a multihydroxylated-aliphatic hydrocarbon or ester thereof to a chlorohydrin, by contacting the multihydroxylated-aliphatic hydrocarbon or ester thereof starting material with a source of hydrogen chloride at superatmospheric, atmospheric and subatmospheric pressure conditions for a sufficient time and at a sufficient temperature, preferably wherein such contracting step is carried out without substantial removal of water, to produce the desired chlorohydrin product; wherein the desired product or products can be made in high yield without substantial formation of undesired overchlorinated byproducts; said process carried out without a step undertaken to specifically remove volatile chlorinated hydrocarbon by-products or chloroacetone, wherein the combined concentration of volatile chlorinated hydrocarbon by-products and chloroacetone is less than 2000 ppm throughout any stage of the said process.
摘要:
A process for producing 4-methyl-2,3,5,6-tetrafluorobenzyl alcohol including the following steps: (A): a step for fluorinating 2,3,5,6-tetrachloroterephthaloyl dichloride, (B): a step for reducing the product obtained in step (A), (C): a step for chlorinating the product obtained in step (B), and Step (D): a step for hydrogenating the product obtained in step (C).
摘要:
Process for the manufacture of dichloropropanol in which glycerol is reacted with a chlorinating agent comprising hydrochloric acid in a liquid medium in equilibrium with a vapour phase and in which the condensation of a fraction exhibiting the composition of the vapour phase is prevented.