Abstract:
An engine variable camshaft timing phaser (10) includes a sprocket (12) and a planetary gear assembly (14). The sprocket (12) receives rotational drive input from an engine crankshaft. The planetary gear assembly (14) includes two or more ring gears (26, 28), multiple planet gears (24), a sun gear (22), and a wrap spring (76). One of the ring gears (26, 28) receives rotational drive input from the sprocket (12) and one of the ring gears (26, 28) transmits rotational drive output to an engine camshaft. The sun gear (22) engages with the planet gears (24). The wrap spring (76) experiences expansion and contraction exertions to permit advancing and retarding engine valve opening and closing, and to prevent advancing and retarding engine valve opening and closing.
Abstract:
An internal combustion engine includes a crankshaft rotatable about a crankshaft axis; a camshaft rotatable by the crankshaft about a camshaft axis; an engine cover defining an engine cover volume within the internal combustion engine; a drive member disposed within the engine cover volume which transfers rotational motion from the crankshaft to the camshaft; a camshaft phaser disposed within the engine cover volume which controllably varies the phase relationship between the crankshaft and the camshaft; an actuator which operates the camshaft phaser; and an actuator mount within the engine cover volume which mounts the actuator structurally independent of the engine cover, thereby allowing removal of the engine cover independently of the actuator.
Abstract:
A continuous variable valve timing with an intermediate lock pin and includes a camshaft, with a cam that protrudes from the camshaft, configured to lift a valve. In addition, a variable device is disposed at one side of the camshaft with a retarded angle chamber and an advanced angle chamber disposed therein. An oil control valve is configured to supply the retarded angle chamber or the advanced angle chamber with hydraulic pressure to retard or advance the rotation of the camshaft, respectively. Furthermore, a cam position detector is configured to detect a rotation position of the cam. A controller is configured to detect a signal of the rotation position of the camshaft from the cam position detector and vary a frequency of a PWM duty configured to operate the oil control valve, when a variation characteristic of the signal of the rotation position exceeds a predetermined range.
Abstract:
A camshaft drive system for an internal combustion engine includes a drive sprocket fixed upon a crankshaft of the engine and a driven sprocket fixed upon a camshaft of the engine. A flexible power transmission element extends between the drive sprocket and driven sprocket. A tensioning device for the flexible power transmission element includes a linear actuator and a number of movable contactors for engaging and tensioning both the slack side and the tight side of the power transmission element, such that proper phasing of the camshaft with respect to the crankshaft is maintained.
Abstract:
Apparatus and methods for shifting the phase between a driver gear and a driven gear in communication by a timing belt are provided as well as methods for configuring the apparatus. The apparatus may continuously vary the phase relationship between the driver gear and the driven gear.
Abstract:
An engine includes a camshaft with outer and inner elongate members. The outer elongate member can include a lobe that actuates a valve. The inner elongate member can be axially disposed within a passageway defined by the outer elongate member. The inner elongate member can be movable relative to the outer elongate member. A tab can be attached to the inner elongate member and can extend into an aperture defined by the outer elongate member. Crankshaft and camshaft pulleys can be respectively attached to the crankshaft and camshaft. A flexible transmitter can be routed over the camshaft pulley, a first deflection member, the crankshaft pulley, and a second deflection member. A first deflection actuator can be engaged with the first deflection member and can facilitate variation in a phase relationship between the camshaft and crankshaft pulleys. A vehicle may also be provided.
Abstract:
An engine includes a camshaft with outer and inner elongate members. The outer elongate member can include a lobe that actuates a valve. The inner elongate member can be axially disposed within a passageway defined by the outer elongate member. The inner elongate member can be movable relative to the outer elongate member. A tab can be attached to the inner elongate member and can extend into an aperture defined by the outer elongate member. Crankshaft and camshaft pulleys can be respectively attached to the crankshaft and camshaft. A flexible transmitter can be routed over the camshaft pulley, a first deflection member, the crankshaft pulley, and a second deflection member. A first deflection actuator can be engaged with the first deflection member and can facilitate variation in a phase relationship between the camshaft and crankshaft pulleys. A vehicle may also be provided.
Abstract:
A system for continuously varying valve-opening overlap in reciprocating internal combustion engines changes the path of the timing belt (16) that drives the intake valve camshaft (26). An idler wheel (44) mounted on a pivoted arm (48) turns against the timing belt. At low engine speeds, the sprocket wheel idles against the timing belt. At higher engine speeds, increased engine oil pressure causes a hydraulic cylinder (58) to force the sprocket wheel against the timing belt, changing its path. As the path of the belt is changed, the intake valve position is advanced with respect to the position of the crankshaft (12). The exhaust valve position remains the same relative to that of the crankshaft. Thus at above-idle speeds, intake-exhaust valve overlap is present. Since the amount of belt path deviation is related to engine oil pressure, and thus engine speed, valve overlap varies smoothly as a function of engine speed. A tensioner (30) maintains proper belt tensioning at all times.
Abstract:
In accordance with the invention, an internal combustion engine having reciprocating piston sleeves is realized comprising an engine block with a pair of cylinders, each cylinder having an intake port, an exhaust port and two linearly opposing pistons connected to two opposing crankshafts. A pair of piston sleeves are reciprocatingly mounted in each cylinder, one piston sleeve around each piston. Each piston sleeve is connected to one of two eccentric shafts that run parallel and adjacent to each crankshaft. The piston sleeves have ported slots in communication with either the intake ports or the exhaust ports of each cylinder. The eccentric shafts are mechanically connected to the crankshafts such that they move in unison.