Abstract:
The invention relates to an indirect heating system in which a solid fuel circulates in the form of particles. The inventive system comprises a grinding station, a furnace (7), at least one intermediate silo, a separator, at least one cyclone and, optionally, a gas recirculation fan. The invention is characterised in that a dust extractor (10) captures the finest particles which are subsequently introduced into the furnace (7) by means of at least one specific conduit (52) and burnt by at least one specific burner (71). The aforementioned ultra-fine particles are then stored in a specific silo (10), dosed into a feeding device (61), mixed in well defined proportions with hot air and conveyed to the specific burner (71) through the specific conduit (52).
Abstract:
An adjustable device installed at the inlet of conventional junctions/splitters (116) for on-line control of the distribution of coal among the outlet pipes is herein disclosed. The device includes a plurality of wake inducing airfoils (60) each positioned upstream of a plurality of flow channels in the riffler (50) for directing coal flow to the outlet pipes. Each wake-inducing airfoil has a cross-section defined by a width W that varies along its length H for creating upstream turbulence, and a particle wake that preferentially diverts the coal flow to one of the outlet pipes at the splitter junction without affecting primary air flow. For example, each wake inducing airfoil may comprise a rounded convex edge leading to straight tapered sides. The surfaces of the sides may be roughened or textured (63) for promoting turbulent boundary layers. In addition, conventional fixed or variable orifices may be used in combination with the wake inducing airfoils for balancing primary air flow rates. The device allows fine-adjustment control of coal flow rates when used in combination with the slotted riffler, yet it has negligible effect on the distribution of primary air, resulting in closely balanced coal flow, reduced pollutant emissions and improved combustion efficiency.
Abstract:
A fuel supply duct, which supplies a mixed fluid of a solid fuel and carrier gas to one or more burners provided on the walls of a furnace, is provided with a branching part, and each of a plurality of branch ducts, which branch out from the branching part, is connected to a corresponding burner. Also a damper, with which the tilt angle with respect to the direction of flow of the mixed fluid can be changed, is positioned in the fuel supply duct at the upstream side of the branching part so that a mutual difference will arise in the solid fuel concentrations of the mixed fluid supplied to the respective branch ducts. A fuel distributor for fuel supply duct is thus arranged. The tilt angle of the above-mentioned damper is adjusted to increase the concentration of solid fuel in the mixed fluid supplied to a specific burner. At a burner to which the high solid fuel concentration is supplied, stability of ignition and stable combustion of the ignited flame can be obtained during low load operation.
Abstract:
An adjustable device installed at the inlet of conventional junctions/splitters (116) for on-line control of the distribution of coal among the outlet pipes is herein disclosed. The device includes a plurality of flow control elements (60) each positioned upstream of a plurality of flow channels in the riffler (50) for directing coal flow to the outlet pipes. Each flow control element preferably comprises a rounded convex edge leading to straight tapered sides (FIG. 9). The surfaces of the sides may be roughened or textured (63) for promoting turbulent boundary layers (FIG. 9). In addition, conventional fixed or variable orifices may be used in combination with the flow control elements for balancing primary air flow rates. The device allows fine-adjustment control of coal flow rates when used in combination with the slotted riffler, yet it has negligible effect on the distribution of primary air. The combination of the riffler assembly and the coal flow control elements (60) results in closely balanced coal flow. Balanced coal flow is imperative to the optimization of the operation of pulverized coal boiler systems (i.e. reduced pollutant emissions, improved combustion efficiency).
Abstract:
A system for monitoring coal flow through a coal delivery tube in a blast furnace fuel injection system is disclosed, which system automatically actuates a purge cycle for clearing accumulations of coal from a coal lance when a temperature drop indicative of an imminent blockage is detected. A method of controlling the purge system is also disclosed.
Abstract:
A dual fuel boiler has a granular fuel burner and a fluid fuel burner. The fluid fuel burner is movable between a retracted stored position at a side of a combustion chamber-of the boiler and an extended operative position in which it extends out over a brazier of the granular fuel burner. Thus in the operative position substantially all of the flame and hot combustion gases generated by the fluid fuel burner in use are directed away from the brazier to prevent damage to the brazier.
Abstract:
Provided is a combustion burner including: a fuel nozzle (51) that is able to blow a fuel gas obtained by mixing pulverized coal with primary air; a secondary air nozzle (52) that is able to blow secondary air from the outside of the fuel nozzle (51); a flame stabilizer (54) that is provided at a front end portion of the fuel nozzle (51) so as to be near the axis center; and a rectification member (55) that is provided between the inner wall surface of the fuel nozzle (51) and the flame stabilizer (54), wherein an appropriate flow of a fuel gas obtained by mixing solid fuel with air may be realized.
Abstract:
A solid-fuel burner includes: a venturi having a constricting portion where the transverse cross section of a fuel passage is reduced in a fuel nozzle for supplying a solid fuel; and a fuel concentrator for diverting the flow in the nozzle outward in the wake side of the venturi, and the nozzle is formed so that (a) the aperture in the vicinity of an opening portion of a boiler furnace wall surface has a flat shape, (b) cross-sectional shape thereof orthogonal to a nozzle center axis C on the outer peripheral wall of the nozzle is circular in a transverse cross section up to the constricting portion of the venturi, (c) a portion that has a gradually increasing degree of flatness is provided between the constricting portion and the opening portion, and (d) the flat shape in the opening portion is where the degree of flatness reaches a maximum.
Abstract:
A fuel head assembly (120) for a pulverized coal nozzle includes removeable back cover (123) that may be removed substantially horizontally to allow access to liners (141,143,145) inside of the fuel head assembly (120) for servicing. This may be used in places where there access from above the fuel head assembly (120) is restricted. The liners (141,143,145) are constructed of a wear-resistant material and include curved vanes (131,133) for more evenly distributing pulverized solid fuel particles, and for reducing erosion of the fuel head assembly (120).
Abstract:
A combustion system having a furnace defining a combustion chamber includes a first burner disposed at an upper elevation of the combustion chamber and a second burner and a third burner disposed at a lower elevation of the combustion chamber. A first duct extends vertically to convey therein a fuel flow of gas and pulverized fuel. A second duct branches from the first duct to the first burner to convey a first portion of the fuel flow, which is fuel lean, to define a fuel lean flow, wherein a second portion of the fuel flow passes through the first duct as a fuel rich flow. A third duct includes one end disposed longitudinally within the first duct. An impeller is disposed within the first duct upstream of the branching of the second duct and downstream of the one end of the third duct disposed in the first duct. The impeller includes a plurality of blades to direct outwardly the pulverized fuel of the fuel rich flow to provide a fuel reduced content flow passing through the second duct to the second burner, and a fuel concentrated content flow passing through first duct to the first burner.